Advertisement

Transcriptome-based mining and expression profiling of Pythium responsive transcription factors in Zingiber sp.

  • Vishnu Sukumari Nath
  • Sayuj Koyyappurath
  • Teena Elizabeth Alex
  • Kiran Ayyanperumal Geetha
  • Lesly Augustine
  • Alka Nasser
  • George Thomas
Original Article

Abstract

Transcription factors (TFs) fine-tune the host defense transcriptome in response to pathogen invasions. No information is available on Zingiber zerumbet (Zz) TFs involved in defense response against Pythium myriotylum. Here, we provide a global identification, characterization, and temporal expression profiling of Zz TFs following an incompatible interaction with P. myriotylum using a transcriptome sequencing approach. We identified a total of 903 TFs belonging to 96 families based on their conserved domains. Evolutionary analysis clustered the Zz TFs according to their phylogenetic affinity, providing glimpses of their functional diversities. High throughput expression array analysis highlighted a complex interplay between activating and repressing transcription factors in fine-tuning Zz defense response against P. myriotylum. The high differential modulation of TFs involved in cell wall fortification, lignin biosynthesis, and SA/JA hormone crosstalk allows us to envisage that this mechanism plays a central role in restricting P. myriotylum proliferation in Zz. This study lays a solid foundation and provides valuable resources for the investigation of the evolutionary history and biological functions of Zz TF genes involved in defense response.

Keywords

Biotic stress Defense response Ginger Plant-pathogen interaction Transcriptional reprogramming 

Notes

Acknowledgments

VSN and LA gratefully acknowledge Kerala State Council for Science, Technology and Environment (KSCSTE), Government of Kerala Post-Doctoral Fellowship (Award No: 001-11/PDF/2016/KSCSTE) and research fellowship (Award No. 010-55/FHSP/2010/CSTE), respectively. SK thanks Science and Engineering Research Board (SERB), Government of India for National Post-Doctoral Fellowship (File No. PDF/2017/002022). KG gratefully acknowledges Council for Scientific and Industrial Research (CSIR), Government of India for research fellowship (F. No. 9/716(0103)/2008- EMR-I). GT acknowledges CSIR, Government of India for a research grant (No. 38(1397)/14EMR-II). We thank the anonymous reviewers for their valuable comments in improving the manuscript.

Authors’ contributions

VSN executed the bioinformatics pipelines, performed data analysis, and drafted the manuscript. SK contributed to the bioinformatics analysis and drafting the manuscript. TEA contributed to the data analysis. KAG performed transcriptome sequencing and assembly. LA performed microarray analysis. AN contributed to data analysis. GT conceived and supervised the study. All authors read, commented on, and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10142_2018_644_MOESM1_ESM.pdf (2.4 mb)
ESM 1 (PDF 2436 kb)
10142_2018_644_MOESM2_ESM.pdf (2.2 mb)
ESM 2 (PDF 2268 kb)
10142_2018_644_MOESM3_ESM.pdf (1.6 mb)
ESM 3 (PDF 1634 kb)
10142_2018_644_MOESM4_ESM.xls (104 kb)
Supplementary Table S1 (XLS 104 kb)
10142_2018_644_MOESM5_ESM.xls (64 kb)
Supplementary Table S2 (XLS 63 kb)
10142_2018_644_MOESM6_ESM.xls (293 kb)
Supplementary Table S3 (XLS 293 kb)
10142_2018_644_MOESM7_ESM.xlsx (17 kb)
Supplementary Table S4 (XLSX 16 kb)
10142_2018_644_MOESM8_ESM.xls (95 kb)
Supplementary Table S5 (XLS 95 kb)

References

  1. Alves SM, Dadalto PS, Gonçalves BA et al (2013) Plant bZIP transcription factors responsive to pathogens: a review. Int J Mol Sci 14:7815–7828CrossRefGoogle Scholar
  2. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543.  https://doi.org/10.1093/jxb/ers100 CrossRefPubMedGoogle Scholar
  3. Bai Y, Meng Y, Huang D, Qi Y, Chen M (2011) Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128–136.  https://doi.org/10.1016/j.ygeno.2011.05.002 CrossRefPubMedGoogle Scholar
  4. BILGIN DD, ZAVALA JA, ZHU JIN et al (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613.  https://doi.org/10.1111/j.1365-3040.2010.02167.x CrossRefPubMedGoogle Scholar
  5. Birkenbihl RP, Diezel C, Somssich IE (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159:266–285.  https://doi.org/10.1104/pp.111.192641 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opin Plant Biol 20:35–46.  https://doi.org/10.1016/j.pbi.2014.04.004 CrossRefPubMedGoogle Scholar
  7. Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676.  https://doi.org/10.1093/bioinformatics/bti610 CrossRefPubMedGoogle Scholar
  8. Conte MG, Gaillard S, Lanau N, Rouard M, Perin C (2008) GreenPhylDB: a database for plant comparative genomics. Nucleic Acids Res 36:D991–D998.  https://doi.org/10.1093/nar/gkm934 CrossRefPubMedGoogle Scholar
  9. De Coninck B, Timmermans P, Vos C et al (2015) What lies beneath: belowground defense strategies in plants. Trends Plant Sci 20:91–101.  https://doi.org/10.1016/j.tplants.2014.09.007 CrossRefPubMedGoogle Scholar
  10. Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87.  https://doi.org/10.1016/j.plantsci.2013.03.004 CrossRefPubMedGoogle Scholar
  11. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581.  https://doi.org/10.1016/j.tplants.2010.06.005 CrossRefGoogle Scholar
  12. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78.  https://doi.org/10.1016/j.tplants.2004.12.006 CrossRefPubMedGoogle Scholar
  13. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371.  https://doi.org/10.1016/j.pbi.2007.04.020 CrossRefPubMedGoogle Scholar
  14. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Plant Pathol J 26:110–114.  https://doi.org/10.5423/PPJ.2010.26.2.110 CrossRefGoogle Scholar
  15. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815.  https://doi.org/10.1093/nar/gks1094 CrossRefGoogle Scholar
  16. Froidure S, Canonne J, Daniel X, Jauneau A, Briere C, Roby D, Rivas S (2010) AtsPLA2-α nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proc Natl Acad Sci 107:15281–15286.  https://doi.org/10.1073/pnas.1009056107 CrossRefPubMedGoogle Scholar
  17. Gatz C (2012) From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol Plant-Microbe Interact 26:151–159.  https://doi.org/10.1094/MPMI-04-12-0078-IA CrossRefGoogle Scholar
  18. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652.  https://doi.org/10.1038/nbt.1883 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hu W, Yang H, Yan Y, Wei Y, Tie W, Ding Z, Zuo J, Peng M, Li K (2016) Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci Rep 6.  https://doi.org/10.1038/srep22783
  20. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2016) EGGNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293.  https://doi.org/10.1093/nar/gkv1248 CrossRefPubMedGoogle Scholar
  21. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34:2115–2122.  https://doi.org/10.1093/molbev/msx148 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, bZIP Research Group (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111.  https://doi.org/10.1016/S1360-1385(01)02223-3 CrossRefPubMedGoogle Scholar
  23. Jayaswall K, Mahajan P, Singh G, Parmar R, Seth R, Raina A, Swarnkar MK, Singh AK, Shankar R, Sharma RK (2016) Transcriptome analysis reveals candidate genes involved in blister blight defense in tea (Camellia sinensis (L) Kuntze). Sci Rep 6:1–14.  https://doi.org/10.1038/srep30412 CrossRefGoogle Scholar
  24. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329.  https://doi.org/10.1038/nature05286 CrossRefPubMedGoogle Scholar
  25. Kamiya T, Borghi M, Wang P, Danku JMC, Kalmbach L, Hosmani PS, Naseer S, Fujiwara T, Geldner N, Salt DE (2015) The MYB36 transcription factor orchestrates Casparian strip formation. Proc Natl Acad Sci 112:10533–10538.  https://doi.org/10.1073/pnas.1507691112 CrossRefPubMedGoogle Scholar
  26. Kangasjärvi S, Neukermans J, Li S et al (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63:1619–1636.  https://doi.org/10.1093/jxb/err402 CrossRefPubMedGoogle Scholar
  27. Kavitha PG, Thomas G (2007) Evaluation of Zingiberaceae for resistance to ginger soft rot caused by Pythium aphanidermatum (Edson) fitzp. Plant Genet Resour Newslett 152:54–57Google Scholar
  28. Kavitha PG, Thomas G (2008) Defence transcriptome profiling of Zingiber zerumbet (L.) Smith by mRNA differential display. J Biosci 33:81–90.  https://doi.org/10.1007/s12038-008-0002-2 CrossRefPubMedGoogle Scholar
  29. Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703.  https://doi.org/10.1093/mp/sss128 CrossRefPubMedGoogle Scholar
  30. Kim T-W, Wang Z-Y (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704.  https://doi.org/10.1146/annurev.arplant.043008.092057 CrossRefPubMedGoogle Scholar
  31. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  32. Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M (2014) Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 9:1–14.  https://doi.org/10.1371/journal.pone.0113092 CrossRefGoogle Scholar
  33. Lehmann S, Serrano M, L’Haridon F, Tjamos SE, Metraux JP (2015) Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112:54–62.  https://doi.org/10.1016/j.phytochem.2014.08.027 CrossRefPubMedGoogle Scholar
  34. Li J (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell Online 16:319–331.  https://doi.org/10.1105/tpc.016980 CrossRefGoogle Scholar
  35. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659CrossRefGoogle Scholar
  36. Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491.  https://doi.org/10.1111/j.1365-313X.2006.02712.x CrossRefPubMedGoogle Scholar
  37. Liu L, White MJ, Macrae TH (1999) Functional domains, evolution and regulation. Eur J Biochem 257:247–257.  https://doi.org/10.1046/j.1432-1327.1999.00349.x CrossRefGoogle Scholar
  38. Liu J, Osbourn A, Ma P (2015) MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8:689–708.  https://doi.org/10.1016/j.molp.2015.03.012 CrossRefPubMedGoogle Scholar
  39. Lorenzo O (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different Jasmonate-regulated defense responses in Arabidopsis. Plant Cell Online 16:1938–1950.  https://doi.org/10.1105/tpc.022319 CrossRefGoogle Scholar
  40. Maruyama Y, Yamoto N, Suzuki Y, Chiba Y, Yamazaki KI, Sato T, Yamaguchi J (2013) The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Sci 213:79–87.  https://doi.org/10.1016/j.plantsci.2013.08.008 CrossRefPubMedGoogle Scholar
  41. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959.  https://doi.org/10.1104/pp.105.068544 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43:W566–W570.  https://doi.org/10.1093/nar/gkv468 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mukhtar MS, Deslandes L, Auriac MC, Marco Y, Somssich IE (2008) The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J 56(6):935–947.  https://doi.org/10.1111/j.1365-313X.2008.03651.x. CrossRefPubMedGoogle Scholar
  44. Muthamilarasan M, Khandelwal R, Yadav CB, Bonthala VS, Khan Y, Prasad M (2014) Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS One 9:e109920.  https://doi.org/10.1371/journal.pone.0109920 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M (2015) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:1–15.  https://doi.org/10.3389/fpls.2015.00910 CrossRefGoogle Scholar
  46. Muthamilarasan M, Mangu VR, Zandkarimi H, Prasad M, Baisakh N (2016) Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice. Sci Rep 6:1–13.  https://doi.org/10.1038/srep24008 CrossRefGoogle Scholar
  47. Ndamukong I, Al AA, Thurow C et al (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139.  https://doi.org/10.1111/j.1365-313X.2007.03039.x CrossRefPubMedGoogle Scholar
  48. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:1–16.  https://doi.org/10.3389/fmicb.2013.00248 CrossRefGoogle Scholar
  49. Okubara PA, Paulitz TC (2005) Root defense responses to fungal pathogens: a molecular perspective. Plant Soil 274:215–226.  https://doi.org/10.1007/s11104-004-7328-9 CrossRefGoogle Scholar
  50. Pajerowska-Mukhtar K, Dong X (2009) A kiss of death—proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Genes Dev 23:2449–2454.  https://doi.org/10.1101/gad.1861609 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:1–14.  https://doi.org/10.3389/fpls.2016.00760 CrossRefGoogle Scholar
  52. Pieterse CMJ, Leon-Reyes A, Van Der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316.  https://doi.org/10.1038/nchembio.164 CrossRefPubMedGoogle Scholar
  53. Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444:10–23.  https://doi.org/10.1016/j.gene.2009.05.012 CrossRefPubMedGoogle Scholar
  54. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381.  https://doi.org/10.1016/j.tplants.2012.02.004 CrossRefPubMedGoogle Scholar
  55. Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356.  https://doi.org/10.1016/S0169-5347(99)01816-9 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Raffaele S, Vailleau F, Léger A et al (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752–767.  https://doi.org/10.1105/tpc.107.054858 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:1–12.  https://doi.org/10.3389/fpls.2014.00017 CrossRefGoogle Scholar
  58. Saidi MN, Mergby D, Brini F (2017) Identification and expression analysis of the {NAC} transcription factor family in durum wheat (Triticum turgidum L. ssp. durum). Plant Physiol Biochem 112:117–128.  https://doi.org/10.1016/j.plaphy.2016.12.028 CrossRefPubMedGoogle Scholar
  59. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009.  https://doi.org/10.1006/bbrc.2001.6299 CrossRefPubMedGoogle Scholar
  60. Salzman RA, Fujita T, Hasegawa PM (1999) An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates. Plant Mol Biol 17:11–17.  https://doi.org/10.1023/a:1007520314478 CrossRefGoogle Scholar
  61. Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem 277:10555–10561.  https://doi.org/10.1074/jbc.M104863200 CrossRefGoogle Scholar
  62. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660.  https://doi.org/10.1073/pnas.97.21.11655 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Seo E, Choi D (2015) Functional studies of transcription factors involved in plant defenses in the genomics era. Brief Funct Genomics 14:260–267.  https://doi.org/10.1093/bfgp/elv011 CrossRefPubMedGoogle Scholar
  64. Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436.  https://doi.org/10.1016/S1369-5266(02)00289-3 CrossRefPubMedGoogle Scholar
  65. Smita S, Katiyar A, Chinnusamy V, Pandey DM, Bansal KC (2015) Transcriptional regulatory network analysis of MYB transcription factor family genes in rice. Front Plant Sci 6:1–19.  https://doi.org/10.3389/fpls.2015.01157 CrossRefGoogle Scholar
  66. Song A, Gao T, Li P, Chen S, Guan Z, Wu D, Xin J, Fan Q, Zhao K, Chen F (2016) Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.00199
  67. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456.  https://doi.org/10.1016/S1369-5266(00)00199-0 CrossRefPubMedGoogle Scholar
  68. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680.  https://doi.org/10.1093/nar/22.22.4673 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic / helix-loop-helix transcription factor family. Plant Cell 15:1749–1770.  https://doi.org/10.1105/tpc.013839.et CrossRefPubMedPubMedCentralGoogle Scholar
  70. Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378.  https://doi.org/10.1104/pp.106.079467.conjunction CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytol 206:932–947.  https://doi.org/10.1111/nph.13286 CrossRefPubMedGoogle Scholar
  72. Van der Ent S, Verhagen BWM, Van Doorn R et al (2008) MYB72 is required in early signaling steps of Rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304.  https://doi.org/10.1104/pp.107.113829 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Vandromme M, Gauthier-Rouviere C, Lamb N, Fernandez A (1996) Regulation of transcription factor localization: fine tuning of gene expression. Trends Biochem Sci 21:59–64CrossRefGoogle Scholar
  74. Wang W, Barnaby JY, Tada Y, Li H, Tör M, Caldelari D, Lee DU, Fu XD, Dong X (2011) Timing of plant immune responses by a central circadian regulator. Nature 470:110–115.  https://doi.org/10.1038/nature09766 CrossRefPubMedGoogle Scholar
  75. Wen CL, Cheng Q, Zhao L, Mao A, Yang J, Yu S, Weng Y, Xu Y (2016) Identification and characterisation of Dof transcription factors in the cucumber genome. Sci Rep 6:1–11.  https://doi.org/10.1038/srep23072 CrossRefGoogle Scholar
  76. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: PCR Protocols, a Guide to Methods and Applications, pp. 315-322.Google Scholar
  77. Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E, Kiddle SJ, Rhodes J, Atwell S, Kliebenstein DJ, Kim YS, Stegle O, Borgwardt K, Zhang C, Tabrett A, Legaie R, Moore J, Finkenstadt B, Wild DL, Mead A, Rand D, Beynon J, Ott S, Buchanan-Wollaston V, Denby KJ (2012) Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24:3530–3557.  https://doi.org/10.1105/tpc.112.102046 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290CrossRefGoogle Scholar
  79. Yadeta KA, J Thomma BP (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:1–12.  https://doi.org/10.3389/fpls.2013.00097 CrossRefGoogle Scholar
  80. Yan J, Tong T, Li X, Chen Q, Dai M, Niu F, Yang M, Deyholos MK, Yang B, Jiang YQ (2017) A novel NAC-type transcription factor, NAC87, from oilseed rape modulates reactive oxygen species accumulation and cell death. Plant Cell Physiol 0:1–14.  https://doi.org/10.1093/pcp/pcx184 CrossRefGoogle Scholar
  81. Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Proteins Struct Funct Bioinf 64:643–651.  https://doi.org/10.1002/prot.21018 CrossRefGoogle Scholar
  82. Zander M, La Camera S, Lamotte O et al (2010) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J 61:200–210.  https://doi.org/10.1111/j.1365-313X.2009.04044.x CrossRefPubMedGoogle Scholar
  83. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829.  https://doi.org/10.1101/gr.074492.107 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhao Y, Wei T, Yin KQ, Chen Z, Gu H, Qu LJ, Qin G (2012) Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol 195:450–460.  https://doi.org/10.1111/j.1469-8137.2012.04160.x CrossRefPubMedGoogle Scholar
  85. Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605.  https://doi.org/10.1111/j.1365-313X.2006.02901.x CrossRefPubMedGoogle Scholar
  86. Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ, Zhao PX, Rhee SY, Fei Z (2016) iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 9:1667–1670.  https://doi.org/10.1016/j.molp.2016.09.014 CrossRefPubMedGoogle Scholar
  87. Zhu T, Nevo E, Sun D, Peng J (2012) Phylogenetic analyses unravel the evolutionary history of nac proteins in plants. Evolution (N Y) 66:1833–1848.  https://doi.org/10.1111/j.1558-5646.2011.01553.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Plant Disease Biology and BiotechnologyRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
  2. 2.Department of Molecular GeneticsInstitute of Plant Molecular Biology (IPMB)České BudějoviceCzech Republic
  3. 3.Department of Genome Structural Biology, Temasek Life Science Laboratory, 1-Research LinkNational University of SingaporeSingaporeSingapore
  4. 4.Department of BiotechnologyKerala Agricultural UniversityThiruvananthapuramIndia
  5. 5.Department of BotanySacred Heart CollegeErnakulamIndia

Personalised recommendations