Advertisement

Functional & Integrative Genomics

, Volume 19, Issue 1, pp 137–150 | Cite as

An insight into the iron acquisition and homeostasis in Aureobasidium melanogenum HN6.2 strain through genome mining and transcriptome analysis

  • Yi Lu
  • Guanglei Liu
  • Hong Jiang
  • Zhenming Chi
  • Zhe ChiEmail author
Original Article

Abstract

Aureobasidium melanogenum HN6.2 is a unique yeast strain who can produce the siderophore of fusigen under iron starvation to guarantee its survival. However, a comprehensive understanding of mechanisms involved in iron acquisition and homeostasis for it is still vacant. In this study, genome sequencing and mining revealed that A. melanogenum HN6.2 strain was the first yeast species that exclusively possessed all the four known mechanisms for the iron acquisition: (i) the siderophore-mediated iron uptake; (ii) reductive iron assimilation; (iii) low-affinity ferrous uptake; and (iv) heme utilization, which suggested its stronger adaptability than Aspergillus fumigatus and Saccharomyces cerevisiae. This HN6.2 strain also employed the vacuolar iron storage for immobilizing the excessive iron to avoid its cellular toxicity. Specially, genome mining indicated that A. melanogenum HN6.2 strain could also synthesize ferricrocin siderophore. Further HPLC and Q-Tof-MS analysis confirmed that the siderophores synthesized by this strain consisted of cyclic fusigen, linear fusigen, ferricrocin, and hydroxyferricrocin and they played parallel roles as both intracellular and extracellular siderophores. Also, the heme utilization for this strain was experimentally verified by the knock-out of heme oxygenase gene. For iron homeostasis, the transcriptome analysis revealed that this strain mainly employed two central regulators of SreA/HapX to tune iron uptake and storage at the transcriptional level. It was also noted that mitogen-activated protein kinase C gene (MpkC) exhibited a transcriptional up-regulation under iron sufficiency, suggesting that it may serve as another factor involved in the repression of siderophore biosynthesis. This is the first genetic blueprint of iron acquisition and homeostasis for A. melanogenum.

Keywords

Aureobasidium melanogenum Iron acquisition Homeostasis Genome mining Transcriptome analysis 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 31500029) and China Postdoctoral Science Foundation (Grant No. 2016M590657).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10142_2018_633_MOESM1_ESM.docx (204 kb)
Online Resource 1 (DOCX 203 kb)
10142_2018_633_MOESM2_ESM.xls (1.5 mb)
Online Resource 2 (XLS 1574 kb)
10142_2018_633_MOESM3_ESM.xls (276 kb)
Online Resource 3 (XLS 276 kb)
10142_2018_633_MOESM4_ESM.xls (799 kb)
Online Resource 4 (XLS 798 kb)
10142_2018_633_MOESM5_ESM.xls (92 kb)
Online Resource 5 (XLS 92 kb)
10142_2018_633_MOESM6_ESM.doc (168 kb)
Online Resource 6 (DOC 168 kb)

References

  1. Blatzer M, Binder U, Haas H (2011a) The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation. Fungal Genet Biol 48(11):1027–1033.  https://doi.org/10.1016/j.fgb.2011.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blatzer M, Schrettl M, Sarg B, Lindner HH, Pfaller K, Haas H (2011b) SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl Environ Microbiol 77(14):4959–4966.  https://doi.org/10.1128/Aem.00182-11 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Botic T, Kralj-Kuncic M, Sepcic K, Batista U, Zalar P, Knez Z, Gunde-Cimerman N (2014) Biological activities of organic extracts of four Aureobasidium pullulans varieties isolated from extreme marine and terrestrial habitats. Nat Prod Res 28(12):874–882.  https://doi.org/10.1080/14786419.2014.888554 CrossRefPubMedGoogle Scholar
  4. Chen XZ, Peng JB, Cohen A, Nelson H, Nelson N, Hediger MA (1999) Yeast SMF1 mediates H+-coupled iron uptake with concomitant uncoupled cation currents. J Biol Chem 274(49):35089–35094.  https://doi.org/10.1074/jbc.274.49.35089 CrossRefPubMedGoogle Scholar
  5. Chen LH, Yang SL, Chung KR (2014) Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata. Microbiology-Sgm 160:970–979.  https://doi.org/10.1099/mic.0.076182-0 CrossRefGoogle Scholar
  6. Chen WT, Tu ME, Sun PL (2016) Superficial phaeohyphomycosis caused by Aureobasidium melanogenum mimicking tinea nigra in an immunocompetent patient and review of published reports. Mycopathologia 181(7–8):555–560.  https://doi.org/10.1007/s11046-016-9989-3 CrossRefPubMedGoogle Scholar
  7. Chi ZM, Wang F, Chi Z, Yue LX, Liu GL, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82(5):793–804.  https://doi.org/10.1007/s00253-009-1882-2 CrossRefPubMedGoogle Scholar
  8. Chi Z, Wang XX, Ma ZC, Buzdar MA, Chi ZM (2012) The unique role of siderophore in marine-derived Aureobasidium pullulans HN6.2. BioMetals 25(1):219–230.  https://doi.org/10.1007/s10534-011-9499-1 CrossRefPubMedGoogle Scholar
  9. Chi Z, Wang XX, Geng Q, Chi ZM (2013) Role of a GATA-type transcriptional repressor Sre1 in regulation of siderophore biosynthesis in the marine-derived Aureobasidium pullulans HN6.2. BioMetals 26(6):955–967.  https://doi.org/10.1007/s10534-013-9672-9 CrossRefPubMedGoogle Scholar
  10. Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ (1994) The Fet4 gene encodes the low-affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269(42):26092–26099PubMedGoogle Scholar
  11. Eisendle M, Oberegger H, Zadra I, Haas H (2003) The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding L-ornithine N-5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol Microbiol 49(2):359–375.  https://doi.org/10.1046/j.1365-2958.2003.03586.x CrossRefPubMedGoogle Scholar
  12. Franken ACW, Werner ER, Haas H, Lokman BC, van den Hondel CAMJJ, Ram AFJ, de Weert S, Punt PJ (2013) The role of coproporphyrinogen III oxidase and ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger. Appl Microbiol Biotechnol 97(22):9773–9785.  https://doi.org/10.1007/s00253-013-5274-2 CrossRefPubMedGoogle Scholar
  13. Franken AC, Lechner BE, Werner ER, Haas H, Lokman BC, Ram AF, van den Hondel CA, de Weert S, Punt PJ (2014) Genome mining and functional genomics for siderophore production in Aspergillus niger. Brief Funct Genomics 13(6):482–492.  https://doi.org/10.1093/bfgp/elu026 CrossRefPubMedGoogle Scholar
  14. Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549.  https://doi.org/10.1186/1471-2164-15-549 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435.  https://doi.org/10.1093/nar/gkn176 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gsaller F, Hortschansky P, Beattie SR, Klammer V, Tuppatsch K, Lechner BE, Rietzschel N, Werner ER, Vogan AA, Chung D, Muhlenhoff U, Kato M, Cramer RA, Brakhage AA, Haas H (2014) The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J 33(19):2261–2276.  https://doi.org/10.15252/embj.201489468 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haas H (2014) Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 31(10):1266–1276.  https://doi.org/10.1039/c4np00071d CrossRefPubMedPubMedCentralGoogle Scholar
  18. Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187.  https://doi.org/10.1146/annurev.phyto.45.062806.094338 CrossRefPubMedGoogle Scholar
  19. Haselwandter K, Haninger G, Ganzera M (2011) Hydroxamate siderophores of the ectomycorrhizal fungi Suillus granulatus and S. luteus. BioMetals 24(1):153–157.  https://doi.org/10.1007/s10534-010-9383-4 CrossRefPubMedGoogle Scholar
  20. Haselwandter K, Haninger G, Ganzera M, Haas H, Nicholson G, Winkelmann G (2013) Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. BioMetals 26(6):969–979.  https://doi.org/10.1007/s10534-013-9673-8 CrossRefPubMedGoogle Scholar
  21. Hortschansky P, Ando E, Tuppatsch K, Arikawa H, Kobayashi T, Kato M, Haas H, Brakhage AA (2015) Deciphering the combinatorial DNA-binding code of the CCAAT-binding complex and the iron-regulatory basic region leucine zipper (bZIP) transcription factor HapX. J Biol Chem 290(10):6058–6070.  https://doi.org/10.1074/jbc.M114.628677 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jain R, Valiante V, Remme N, Docimo T, Heinekamp T, Hertweck C, Gershenzon J, Haas H, Brakhage AA (2011) The MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin production and iron adaptation in Aspergillus fumigatus. Mol Microbiol 82(1):39–53.  https://doi.org/10.1111/j.1365-2958.2011.07778.x CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jiang H, Liu GL, Chi Z, Wang JM, Zhang LL, Chi ZM (2017) Both a PKS and a PPTase are involved in melanin biosynthesis and regulation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. Gene 602:8–15.  https://doi.org/10.1016/j.gene.2016.11.020 CrossRefPubMedGoogle Scholar
  24. Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem Rev 109(10):4536–4552.  https://doi.org/10.1021/cr9001676 CrossRefPubMedGoogle Scholar
  25. Konetschny-Rapp S, Huschka HG, Winkelmann G, Jung G (1988) High-performance liquid chromatography of siderophores from fungi. Biol Met 1(1):9–17CrossRefGoogle Scholar
  26. Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47(5):1185–1197.  https://doi.org/10.1046/j.1365-2958.2003.03368.x CrossRefPubMedGoogle Scholar
  27. Kragl C, Schrettl M, Abt B, Sarg B, Lindner HH, Haas H (2007) EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of Aspergillus fumigatus. Eukaryot Cell 6(8):1278–1285.  https://doi.org/10.1128/E-C.00066-07 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mershon-Shier KL, Deville JG, Delair S, Fothergill AW, Wickes B, de Hoog GS, Sutton DA, Lewinski MA (2011) Aureobasidium pullulans var. melanigenum fungemia in a pediatric patient. Med Mycol 49(1):80–83.  https://doi.org/10.3109/13693786.2010.490925 CrossRefPubMedGoogle Scholar
  29. Mourer T, Jacques JF, Brault A, Bisaillon M, Labbe S (2015) Shu1 is a cell-surface protein involved in iron acquisition from heme in Schizosaccharomyces pombe. J Biol Chem 290(16):10176–10190.  https://doi.org/10.1074/jbc.M115.642058 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mourer T, Normant V, Labbe S (2017) Heme assimilation in Schizosaccharomyces pombe requires cell-surface-anchored protein Shu1 and vacuolar transporter Abc3. J Biol Chem 292(12):4898–4912.  https://doi.org/10.1074/jbc.M117.776807 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Oberegger H, Schoeser M, Zadra I, Abt B, Haas H (2001) SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41(5):1077–1089.  https://doi.org/10.1046/j.1365-2958.2001.02586.x CrossRefPubMedGoogle Scholar
  32. Pourhassan N, Gagnon R, Wichard T, Bellenger JP (2014) Identification of the hydroxamate siderophore ferricrocin in Cladosporium cladosporioides. Nat Prod Commun 9(4):539–540PubMedGoogle Scholar
  33. Protchenko O, Philpott CC (2003) Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Saccharomyces cerevisiae. J Biol Chem 278(38):36582–36587.  https://doi.org/10.1074/jbc.M306584200 CrossRefPubMedGoogle Scholar
  34. Rédou V, Kumar A, Hainaut M, Henrissat B, Record E, Barbier G, Burgaud G (2016) Draft genome sequence of the deep-sea basidiomycetous yeast Cryptococcus sp. strain Mo29 reveals its biotechnological potential. Genome Announc 4(4).  https://doi.org/10.1128/genomeA.00461-16
  35. Schrettl M, Winkelmann G, Haas H (2004) Ferrichrome in Schizosaccharomyces pombe-an iron transport and iron storage compound. BioMetals 17(6):647–654.  https://doi.org/10.1007/s10534-004-1230-z CrossRefPubMedGoogle Scholar
  36. Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN, Haynes K, Haas H (2007) Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3(9):1195–1207.  https://doi.org/10.1371/journal.ppat.0030128 CrossRefPubMedGoogle Scholar
  37. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111.  https://doi.org/10.1093/bioinformatics/btp120 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wang WL, Chi Z, Liu GL, Buzdar MA, Chi ZM, Gu QQ (2009) Chemical and biological characterization of siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 and its antibacterial activity. BioMetals 22(6):965–972.  https://doi.org/10.1007/s10534-009-9248-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Marine Life ScienceOcean University of ChinaQingdaoChina
  2. 2.Key Laboratory of Marine Genetics and Breeding (Ocean University of China)Ministry of EducationQingdaoChina

Personalised recommendations