Functional & Integrative Genomics

, Volume 18, Issue 6, pp 613–625 | Cite as

Starch content differences between two sweet potato accessions are associated with specific changes in gene expression

  • Songtao Yang
  • Xiaojing Liu
  • Shuai Qiao
  • Wenfang Tan
  • Ming Li
  • Junyan Feng
  • Cong Zhang
  • Xiang Kang
  • Tianbao Huang
  • Youlin Zhu
  • Lan YangEmail author
  • Dong WangEmail author
Original Article


Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important root crops in the world. Initial formation and development of storage roots (SRs) are key factors affecting its yields. In order to study the molecular mechanism and regulatory networks of the SRs development process, we have analyzed root transcriptomes between the high and low starch content sweet potato accessions at three different developmental stages. In this study, we assembled 46,840 unigenes using Illumina paired-end sequencing reads and identified differentially expressed genes (DEGs) between two accessions. The numbers of DEGs were increased with the development of SRs, indicating that the difference between two accessions is enlarging with the maturation. DEGs were mainly enriched in starch biosynthesis, plant hormones regulatory, and genetic information processing pathways. Then, expression patterns of DEGs that are most significant and starch biosynthesis related were validated using qRT-PCR. Our results provide valuable resources to future study on molecular mechanisms of SRs development and candidate genes for starch content improvement in sweet potato.


Gene regulation RNA-Seq Storage root Starch content Sweet potato 


Author contributions

Experiments were designed by STY, LY, and DW. XJL and STY conducted experiments, and all authors analyzed the data. LY and DW wrote the manuscript, and all authors edited the manuscript. All authors read and approved the final manuscript.

Funding information

This work was funded by the China Agriculture Research System (CARS-10-B5), National Science Foundation of China (31401077), Sichuan Breeding Cooperation Project (2016NYZ0032), Sichuan Financial Innovation Project (2016ZYPZ-012), and Natural Science Foundation of Jiangxi Province (20171ACB20001).

Supplementary material

10142_2018_611_Fig11_ESM.gif (15 kb)
Fig. S1

PCA analysis was performed to show overall gene expression similarity among different RNA-sequencing data. (GIF 15 kb)

10142_2018_611_MOESM1_ESM.tiff (1.3 mb)
High resolution image (TIFF 1314 kb)
10142_2018_611_Fig12_ESM.gif (13 kb)
Fig. S2

Correlation between RNA-seq and qRT-PCR results for 12 DEGs. The log2 value of FPKM extracted for RNA-seq results and the qRT-PCR results obtained from the comparative CT method were displayed. (GIF 12 kb)

10142_2018_611_MOESM2_ESM.tiff (591 kb)
High resolution image (TIFF 590 kb)
10142_2018_611_Fig13_ESM.gif (12 kb)
Fig. S3

Validation of relative expression levels of DEGs by qRT-PCR which identified using the recent public reference genome. (GIF 11 kb)

10142_2018_611_MOESM3_ESM.tif (76 kb)
High resolution image (TIF 76 kb)
10142_2018_611_MOESM4_ESM.xlsx (11 kb)
Table S1 General information about RNA sequence libraries used in this study. (XLSX 10 kb)
10142_2018_611_MOESM5_ESM.xlsx (10.5 mb)
Table S2 Functional annotation of Ipomoea batatas unigenes. (XLSX 10726 kb)
10142_2018_611_MOESM6_ESM.xlsx (33 kb)
Table S3 Similarity of unigenes sequences between Ipomoea batatas and other species. (XLSX 33 kb)
10142_2018_611_MOESM7_ESM.xlsx (68 kb)
Table S4 Kyoto Encyclopedia of Genes and Genomes classification of Ipomoea batatas unigenes. (XLSX 68 kb)
10142_2018_611_MOESM8_ESM.xlsx (2.6 mb)
Table S5 Functional annotation and transcriptional levels of DEGs. (XLSX 2636 kb)
10142_2018_611_MOESM9_ESM.xlsx (20 kb)
Table S6 DEGs enriched by GO and KEGG analyses. (XLSX 20 kb)
10142_2018_611_MOESM10_ESM.xlsx (12 kb)
Table S7 Primers used in qRT-PCR. (XLSX 12 kb)
10142_2018_611_MOESM11_ESM.xlsx (10 kb)
Table S8 Statistics of reads mapping rate for each sample to the recent public reference genome. (XLSX 10 kb)
10142_2018_611_MOESM12_ESM.xlsx (2.2 mb)
Table S9 DEGs between the high and low starch content sweetpotato accessions using the recent public reference genome. (XLSX 2281 kb)
10142_2018_611_MOESM13_ESM.xlsx (19 kb)
Table S10 DEGs enriched by GO and KEGG for the new analyses using recent public reference genome. (XLSX 19 kb)
10142_2018_611_MOESM14_ESM.xlsx (3.1 mb)
Table S11 Comparison of our de novo assembled unigenes with the gene sets in the recent public reference genome. (XLSX 3209 kb)


  1. Ahn YO, Kim SH, Kim CY, Lee JS, Kwak SS, Lee HS (2010) Exogenous sucrose utilization and starch biosynthesis among sweet potato cultivars. Carbohydr Res 345(1):55–60CrossRefGoogle Scholar
  2. Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45–48CrossRefGoogle Scholar
  3. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20(9):1464–1465CrossRefGoogle Scholar
  4. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, de Montigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisramé A, Boyer J, Cattolico L, Confanioleri F, de Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wésolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430(6995):35–44CrossRefGoogle Scholar
  5. Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman T, Doron-Faigenboim A, Hetzroni A, Althan L, Nadir L (2013) Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 14:460CrossRefGoogle Scholar
  6. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652CrossRefGoogle Scholar
  7. Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15(17):1560–1565CrossRefGoogle Scholar
  8. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefGoogle Scholar
  9. Ku AT, Huang YS, Wang YS, Ma D, Yeh KW (2008) IbMADS1 (Ipomoea batatas MADS-box 1 gene) is involved in tuberous root initiation in sweet potato (Ipomoea batatas). Ann Bot 102(1):57–67CrossRefGoogle Scholar
  10. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 12:323CrossRefGoogle Scholar
  11. Liu Q (2017) Improvement for agronomically important traits by gene engineering in sweetpotato. Breed Sci 67(1):15–26CrossRefGoogle Scholar
  12. Matsuo T, Mitsuzono H, Okada R, Itoo S (1988) Variations in the levels of major free cytokinins and free abscisic acid during tuber development of sweet potato. J Plant Growth Regul 7(4):249–258CrossRefGoogle Scholar
  13. Matsuo T, Yoneda T, Itoo S (1983) Identification of free cytokinins and the changes in endogenous levels during tuber development of sweet-potato (Ipomoea batatas Lam). Plant Cell Physiol 24(7):1305–1312Google Scholar
  14. Miyazawa Y, Kato H, Muranaka T, Yoshida S (2002) Amyloplast formation in cultured tobacco BY-2 cells requires a high cytokinin content. Plant Cell Physiol 43(12):1534–1541CrossRefGoogle Scholar
  15. Miyazawa Y, Sakai A, Miyagishima S, Takano H, Kawano S, Kuroiwa T (1999) Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured bright yellow-2 tobacco cells. Plant Physiol 121(2):461–469CrossRefGoogle Scholar
  16. Nakamura K, Ohto MA, Yoshida N, Nakamura K (1991) Sucrose-induced accumulation of beta-amylase occurs concomitant with the accumulation of starch and sporamin in leaf-petiole cuttings of sweet potato. Plant Physiol 96(3):902–909CrossRefGoogle Scholar
  17. Nakatani M, Komeichi M (1992) Changes in endogenous indole acetic-acid level during development of roots in sweet-potato. J J Crop Sci 61(4):683–684CrossRefGoogle Scholar
  18. Noh SA, Lee HS, Huh EJ, Huh GH, Paek KH, Shin JS, Bae JM (2010) SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). J Exp Bot 61(5):1337–1349CrossRefGoogle Scholar
  19. Ohto MA, Nakamura-Kito K, Nakamura K (1992) Induction of expression of genes coding for sporamin and beta-amylase by polygalacturonic acid in leaf-petiole cuttings of sweet potato. Plant Physiol 99(2):422–427CrossRefGoogle Scholar
  20. Ponniah SK, Thimmapuram J, Bhide K, Kalavacharla VK, Manoharan M (2017) Comparative analysis of the root transcriptomes of cultivated sweetpotato (Ipomoea batatas [L.] Lam) and its wild ancestor (Ipomoea trifida [Kunth] G. Don). BMC Plant Biol 17(1):9CrossRefGoogle Scholar
  21. Preuss A, Augustin C, Figueroa CR, Hoffmann T, Valpuesta V, Sevilla JF et al (2014) Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development. J Plant Physiol 171(15):1315–1324CrossRefGoogle Scholar
  22. Pruitt KD, Tatusova T, Maglott DR (2005) NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33(Database issue):D501–D504CrossRefGoogle Scholar
  23. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140CrossRefGoogle Scholar
  24. Sakai A, Kawano S, Kuroiwa T (1992) Conversion of proplastids to amyloplasts in tobacco cultured cells is accompanied by changes in the transcriptional activities of plastid genes. Plant Physiol 100(2):1062–1066CrossRefGoogle Scholar
  25. Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15(5):581–590CrossRefGoogle Scholar
  26. Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M (2006) Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol 142(1):54–62CrossRefGoogle Scholar
  27. Sasaki T, Kainuma K (1984) Control of starch and exocellular polysaccharides biosynthesis by gibberellic acid with cells of sweet potato cultured in vitro. Plant Cell Rep 3(1):23–26CrossRefGoogle Scholar
  28. Senanayake SA, Ranaweera KK, Gunaratne A, Bamunuarachchi A (2013) Comparative analysis of nutritional quality of five different cultivars of sweet potatoes (Ipomea batatas (L) Lam) in Sri Lanka. Food Sci Nutr 1(4):284–291CrossRefGoogle Scholar
  29. Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A 98(8):4788–4793CrossRefGoogle Scholar
  30. Smith AM, Zeeman SC (2006) Quantification of starch in plant tissues. Nat Protoc 1(3):1342–1345CrossRefGoogle Scholar
  31. Takahashi I, Hara M (2014) Enhancement of starch accumulation in plants by exogenously applied methyl jasmonate. Plant Biotechnol Rep 8(2):143–149CrossRefGoogle Scholar
  32. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinf 4:41CrossRefGoogle Scholar
  33. Wang D, Qu Z, Adelson DL, Zhu JK, Timmis JN (2014) Transcription of nuclear organellar DNA in a model plant system. Genome Biol Evol 6(6):1327–1334CrossRefGoogle Scholar
  34. Wang Q-m, Zhang L-m, Guan Y-a, Wang Z-l (2006) Endogenous hormone concentration in developing tuberous roots of different sweet potato genotypes. Agric Sci China 5(12):919–927CrossRefGoogle Scholar
  35. Yang J, Moeinzadeh MH, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G, Zheng J, Sun Z, Fan W, Deng G, Wang H, Hu F, Zhao S, Fernie AR, Boerno S, Timmermann B, Zhang P, Vingron M (2017) Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants 3(9):696–703CrossRefGoogle Scholar
  36. You MK, Hur CG, Ahn YS, Suh MC, Jeong BC, Shin JS, Bae JM (2003) Identification of genes possibly related to storage root induction in sweetpotato. FEBS Lett 536(1–3):101–105CrossRefGoogle Scholar
  37. Zhan X, Yang L, Wang D, Zhu JK, Lang Z (2016) De novo assembly and analysis of the transcriptome of Ocimum americanum var. pilosum under cold stress. BMC Genomics 17:209CrossRefGoogle Scholar
  38. Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R (2009) An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 33(11):1503–1508CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
  2. 2.Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life ScienceNanchang UniversityNanchangChina
  3. 3.Institute of Biotechnology and Nuclear TechnologySichuan Academy of Agricultural SciencesChengduChina
  4. 4.Jiangxi Institute of Red SoilNanchangChina

Personalised recommendations