Marine Biotechnology

, Volume 21, Issue 2, pp 276–290 | Cite as

Stenotrophomonas maltophilia AHL-Degrading Strains Isolated from Marine Invertebrate Microbiota Attenuate the Virulence of Pectobacterium carotovorum and Vibrio coralliilyticus

  • José Carlos Reina
  • Marta Torres
  • Inmaculada LlamasEmail author
Original Article


Many Gram-negative aquacultural and agricultural pathogens control virulence factor expression through a quorum-sensing (QS) mechanism involving the production of N-acylhomoserine (AHL) signalling molecules. Thus, the interruption of QS systems by the enzymatic degradation of signalling molecules, known as quorum quenching (QQ), has been proposed as a novel strategy to combat these infections. Given that the symbiotic bacteria of marine invertebrates are considered to be an important source of new bioactive molecules, this study explores the presence of AHL-degrading bacteria among 827 strains previously isolated from the microbiota of anemones and holothurians. Four of these strains (M3-1, M1-14, M3-13 and M9-54-2), belonging to the species Stenotrophomonas maltophilia, were selected on the basis of their ability to degrade a broad range of AHLs, and the enzymes involved in their activity were identified. Strain M9-54-2, which showed the strongest AHL-degrading activity, was selected for further study. High-performance liquid chromatography–mass-spectrometry confirmed that the QQ enzyme is not a lactonase. Strain M9-54-2 degraded AHL accumulation and reduced the production of enzymatic activity in Pectobacterium carotovorum CECT 225T and Vibrio coralliilyticus VibC-Oc-193 in in vitro co-cultivation experiments. The effect of AHL inactivation was confirmed by a reduction in potato tuber maceration and brine shrimp (Artemia salina) mortality caused by P. carotovorum and Vibrio coralliilyticus, respectively. This study strengthens the evidence of marine organisms as an underexplored and promising source of QQ enzymes, useful to prevent infections in aquaculture and agriculture. To our knowledge, this is the first time that anemones and holothurians have been studied for this purpose.


Quorum quenching N-Acylhomoserine lactones Stenotrophomonas Acylase 



José Carlos Reina is supported by an FPU fellowship from the Spanish Ministry of Education, Culture and Sport (FPU15/01717). The authors wish to thank Michael O’Shea for proofreading the manuscript.

Funding information

This study was funded by the Spanish Ministry of the Economy and Competitiveness [AGL2015-68806-R].

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43:119–124CrossRefPubMedGoogle Scholar
  3. Baird-Parker AC (1963) A classification of micrococci and staphylococci based on physiological and biochemical tests. J Gen Microbiol 30:409–427CrossRefPubMedGoogle Scholar
  4. Ban H, Chai X, Lin Y, Zhou Y, Peng D, Zhou Y, Zou Y, Yu Z, Sun M (2009) Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Rep 28:1847–1855CrossRefPubMedGoogle Scholar
  5. Bhardwaj AK, Vinothkumar K, Rajpara N (2013) Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov 8:68–83CrossRefPubMedGoogle Scholar
  6. Bhatnagar I, Kim SK (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8:2673–2701CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S, Weiland N, Streit WR (2011) BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J Biotechnol 155:86–94CrossRefPubMedGoogle Scholar
  8. Bjarnsholt T, van Gennip M, Jakobsen TH, Christensen LD, Jensen PØ, Givskov M (2010) In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect. Nat Protoc 52(5):282CrossRefGoogle Scholar
  9. Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25:2–41CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942CrossRefPubMedGoogle Scholar
  11. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobactetium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-acyl homoserine lactonase activity. Appl Environ Microbiol 69:4989–4993CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chan KG, Yin WF, Sam CK, Koh CL (2009) A novel medium for the isolation of N-acylhomoserine lactone-degrading bacteria. J Ind Microbiol Biotechnol 36:247–251CrossRefPubMedGoogle Scholar
  13. Chan KG, Atkinson S, Mathee K, Sam CK, Chhabra SR, Cmara M, Koh CL, Williams P (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 11:51CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen R, Zhou Z, Cao Y, Bai Y, Yao B (2010) High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb Cell Factories 9:39CrossRefGoogle Scholar
  15. Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500CrossRefPubMedPubMedCentralGoogle Scholar
  16. Choopun N, Louis V, Huq A, Colwell RR (2002) Simple procedure for rapid identification of Vibrio cholerae from the aquatic environment. Appl Environ Microbiol 68:995–998CrossRefPubMedPubMedCentralGoogle Scholar
  17. Crépin A, Barbey C, Beury-Cirou A, Hélias V, Taupin L, Reverchon S, Nasser W, Faure D, Dufour A, Orange N, Feuilloley M, Heurlier K, Burini JF, Latour X (2012) Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp.). PLoS One 7:e35176CrossRefPubMedPubMedCentralGoogle Scholar
  18. Defoirdt T, Bossier P, Sorgeloos P, Verstraete W (2005) The impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and Vibrio harveyi on their virulence towards gnotobiotically cultured Artemia franciscana. Environ Microbiol 7:1239–1247CrossRefPubMedGoogle Scholar
  19. Defoirdt T, Boon N, Bossier P (2010) Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog 6:e1000989CrossRefPubMedPubMedCentralGoogle Scholar
  20. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258CrossRefPubMedGoogle Scholar
  21. Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109PubMedGoogle Scholar
  22. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3531CrossRefPubMedPubMedCentralGoogle Scholar
  23. Food and Agriculture Organization (FAO) (2016) The state of world fisheries and aquaculture 2016. Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  24. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468CrossRefPubMedGoogle Scholar
  25. Furushita M, Okamoto A, Maeda T, Ohta M, Shiba T (2005) Isolation of multidrug-resistantStenotrophomonas maltophilia from cultured yellowtail (Seriola quinqueradiata) from a marine fish farm. Appl Environ Microbiol 71:5598–5600Google Scholar
  26. Garg N, Manchanda G, Kumar A (2014) Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 105:289–305CrossRefPubMedGoogle Scholar
  27. Garge SS, Nerurkar AS (2016) Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50. PLoS One 11:1–23CrossRefGoogle Scholar
  28. Givskov M, De Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin SØ, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622CrossRefPubMedPubMedCentralGoogle Scholar
  29. Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682CrossRefPubMedGoogle Scholar
  30. Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116CrossRefPubMedGoogle Scholar
  31. Ha C, Kim SK, Lee MN, Lee JH (2014a) Quorum sensing-dependent metalloprotease VvpE is important in the virulence of Vibrio vulnificus to invertebrates. Microb Pathog 71–72:8–14CrossRefPubMedGoogle Scholar
  32. Plate-based assay for swimming motility in Pseudomonas aeruginosa. Methods Mol Biol 1149:59–65Google Scholar
  33. Ha D-G, Kuchma SL, O'Toole GA (2014c) Plate-based assay for swarming motility in Pseudomonas aeruginosa. Methods Mol Biol 1149:67–72Google Scholar
  34. Hayward AC, Fegan N, Fegan M, Stirling GR (2010) Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. J Appl Microbiol 108:756–770CrossRefPubMedGoogle Scholar
  35. Henke JM, Bassler BL (2004) Bacterial social engagements. Trends Cell Biol 14:648–656CrossRefPubMedGoogle Scholar
  36. Hjort K, Presti I, Elväng A, Marinelli F, Sjöling S (2014) Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics. Appl Microbiol Biotechnol 98:2819–2828CrossRefPubMedGoogle Scholar
  37. Huang W, Lin Y, Yi S, Liu P, Shen J, Shao Z, Liu Z (2012) QsdH, a novel AHL lactonase in the RND-type inner membrane of marine Pseudoalteromonas byunsanensis strain 1A01261. PLoS One 7:1–12CrossRefGoogle Scholar
  38. Huedo P, Coves X, Daura X, Gibert I, Yero D (2018) Quorum sensing signaling and quenching in the multidrug-resistant pathogen Stenotrophomonas maltophilia. Front Cell Infect Microbiol 8:122CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hughes C, Fenical W (2012) Antibacterials from the sea. Chemistry (Easton) 42:12512–12525Google Scholar
  40. Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167CrossRefPubMedGoogle Scholar
  41. Jeffries CD, Holtmian DF, Guse DG (1957) Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol 73:590–591Google Scholar
  42. Kang JE, Han JW, Jeon BJ, Kim BS (2016) Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica. Microbiol Res 184:32–41CrossRefPubMedGoogle Scholar
  43. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  45. León-Palmero E, Joglar V, Álvarez PA, Martín-Platero A, Llamas I, Reche I (2018) Diversity and antimicrobial potential in sea anemone and holothurian microbiomes. PLoS One 13:e0196178CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lin YH, Xu JL, Hu J, Wang LH, Leong Ong S, Renton Leadbetter J, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860CrossRefPubMedGoogle Scholar
  47. Lira F, Berg G, Martínez JL (2017) Double-face meets the bacterial world: the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol 8:1–15CrossRefGoogle Scholar
  48. Llamas I, Quesada E, Martínez-Cánovas MJ, Gronquist M, Eberhard A, González JE (2005) Quorum sensing in halophilic bacteria: detection of N-acyl-homoserine lactones in the exopolysaccharide-producing species of Halomonas. Extremophiles 9:333–341CrossRefPubMedGoogle Scholar
  49. Maeda T, García-Contreras R, Pu M, Sheng L, Garcia LR, Tomás M, Wood TK (2012) Quorum quenching quandary: resistance to antivirulence compounds. ISME J 6:493–501CrossRefPubMedGoogle Scholar
  50. Marchler-Bauer A, Bryant SH (2004) CD-search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331CrossRefPubMedPubMedCentralGoogle Scholar
  51. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229CrossRefGoogle Scholar
  52. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226CrossRefGoogle Scholar
  53. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203CrossRefGoogle Scholar
  54. Marketon MM, Gronquist MR, Eberhard A, González JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184:5686–5695CrossRefPubMedPubMedCentralGoogle Scholar
  55. Martín-Platero AM, Valdivia E, Maqueda M, Martínez-Bueno M (2007) Fast, convenient, and economical method for isolating genomic DNA from lactic acid bacteria using a modification of the protein “salting-out” procedure. Anal Biochem 366:102–104CrossRefPubMedGoogle Scholar
  56. Martins PMM, Merfa MV, Takita MA, De Souza AA (2018) Persistence in phytopathogenic bacteria: do we know enough? Front Microbiol 9:1099CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mcclean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, John H, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143:3703–3711CrossRefPubMedGoogle Scholar
  58. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81CrossRefPubMedGoogle Scholar
  59. Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T (2008) N-Acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett 279:124–130CrossRefPubMedGoogle Scholar
  60. Mourey A, Kilbertus G (1976) Simple media containing stabilized tributyrin for demonstrating lipolytic bacteria in foods and soils. J Appl Bacteriol 40:47–51CrossRefPubMedGoogle Scholar
  61. Mukherjee P, Roy P (2016) Genomic potential of Stenotrophomonas maltophilia in bioremediation with an assessment of its multifaceted role in our environment. Front Microbiol 7:1–14Google Scholar
  62. Mukherji R, Varshney NK, Panigrahi P, Suresh CG, Prabhune A (2014) A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophilapenicillin G acylase. Enzym Microb Technol 56:1–7CrossRefGoogle Scholar
  63. Natrah FMI, Defoirdt T, Sorgeloos P, Bossier P (2011) Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture. Mar Biotechnol 13:109–126CrossRefPubMedGoogle Scholar
  64. Ng W-L, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nhan DT, Cam DTV, Wille M, Defoirdt T, Bossier P, Sorgeloos P (2010) Quorum quenching bacteria protect Macrobrachium rosenbergii larvae from Vibrio harveyi infection. J Appl Microbiol 109:1007–1016CrossRefPubMedGoogle Scholar
  66. Niu B, Paulson JN, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci U S A 114:E2450–E2459CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ochiai S, Morohoshi T, Kurabeishi A, Shinozaki M, Fujita H, Sawada I, Ikeda T (2013) Production and degradation of N-acylhomoserine lactone quorum sensing signal molecules in bacteria isolated from activated sludge. Biosci Biotechnol Biochem 77:2436–2440CrossRefPubMedGoogle Scholar
  68. Park S, Kang H, Jang H, Koo B, Yum D, Park S, Kang H, Jang H, Lee J, Koo B (2005) Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 71:2632–2641CrossRefPubMedPubMedCentralGoogle Scholar
  69. Penesyan A, Gillings M, Paulsen IT (2015) Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20:5286–5298CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370Google Scholar
  71. Pirhonen M, Flego D, Heikinheimo R, Palva ET (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476CrossRefPubMedPubMedCentralGoogle Scholar
  72. Quiñones B, Dulla G, Lindow SE (2005) Exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Society 18:682–693Google Scholar
  73. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128CrossRefPubMedGoogle Scholar
  74. Romanenko LA, Uchino M, Tanaka N, Frolova GM, Slinkina NN, Mikhailov VV (2008) Occurrence and antagonistic potential of Stenotrophomonas strains isolated from deep-sea invertebrates. Arch Microbiol 189:337–344CrossRefPubMedGoogle Scholar
  75. Romero M, Diggle SP, Heeb S, Cámara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280:73–80CrossRefPubMedGoogle Scholar
  76. Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217CrossRefPubMedGoogle Scholar
  77. Romero M, Muras A, Mayer C, Buján N, Magariños B, Otero A (2014) In vitro quenching of fish pathogen Edwardsiella tarda AHL production using marine bacterium Tenacibaculum sp. strain 20J cell extracts. Dis Aquat Org 108:217–225CrossRefPubMedGoogle Scholar
  78. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362CrossRefPubMedGoogle Scholar
  79. Rubio-Portillo E, Yarza P, Peñalver C, Ramos-Esplá AA, Antón J (2014) New insights into Oculina patagonica coral diseases and their associated Vibrio spp. communities. ISME J 8:1794–1807CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525CrossRefPubMedGoogle Scholar
  81. Santhakumari S, Nilofernisha NM, Ponraj JG, Pandian SK, Ravi AV (2017) In vitro and in vivo exploration of palmitic acid from Synechococcus elongatus as an antibiofilm agent on the survival of Artemia franciscana against virulent vibrios. J Invertebr Pathol 150:21–31CrossRefPubMedGoogle Scholar
  82. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  83. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci 94:6036–6041CrossRefPubMedGoogle Scholar
  84. Sunder AV, Utari PD, Ramasamy S, van Merkerk R, Quax W, Pundle A (2017) Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 101:2383–2395CrossRefPubMedGoogle Scholar
  85. Tait K, Havenhand J (2013) Investigating a possible role for the bacterial signal molecules N-acylhomoserine lactones in Balanus improvisus cyprid settlement. Mol Ecol 22:2588–2602CrossRefPubMedGoogle Scholar
  86. Tan CH, Koh KS, Xie C, Zhang J, Tan XH, Lee GP, Zhou Y, Ng WJ, Rice SA, Kjelleberg S (2015) Community quorum sensing signalling and quenching: microbial granular biofilm assembly. NPJ Biofilms Microbiomes 1:15006CrossRefPubMedPubMedCentralGoogle Scholar
  87. Tello E, Castellanos L, Duque C (2012) Disruption in quorum-sensing systems and bacterial biofilm inhibition by cembranoid diterpenes isolated from the octocoral Eunicea knighti. J Nat Prod 75:1637–1642CrossRefPubMedGoogle Scholar
  88. Ter Kuile BH, Kraupner N, Brul S (2016) The risk of low concentrations of antibiotics in agriculture for resistance in human health care. FEMS Microbiol Lett 363:fnw210CrossRefPubMedGoogle Scholar
  89. Torabi Delshad S, Soltanian S, Sharifiyazdi H, Haghkhah M, Bossier P (2018) Identification of N-acyl homoserine lactone-degrading bacteria isolated from rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 125:356–369CrossRefPubMedGoogle Scholar
  90. Torres M, Romero M, Prado S, Dubert J, Tahrioui A, Otero A, Llamas I (2013) N-acylhomoserine lactone-degrading bacteria isolated from hatchery bivalve larval cultures. Microbiol Res 168:547–554CrossRefPubMedGoogle Scholar
  91. Torres M, Rubio-Portillo E, Antón J, Ramos-Esplá AA, Quesada E, Llamas I (2016) Selection of the N-acylhomoserine lactone-degrading bacterium Alteromonas stellipolaris PQQ-42 and of its potential for biocontrol in aquaculture. Front Microbiol 7:646CrossRefPubMedPubMedCentralGoogle Scholar
  92. Torres M, Uroz S, Salto R, Fauchery L, Quesada E, Llamas I (2017) HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family. Sci Rep 7:943CrossRefPubMedPubMedCentralGoogle Scholar
  93. Torres M, Reina JC, Fuentes-Monteverde JC, Fernandez G, Rodriguez J, Jiménez C, Llamas I (2018) AHL-lactonase expression in three marine emerging pathogenic Vibrio spp. reduces virulence and mortality in brine shrimp (Artemia salina) and Manila clam (Venerupis philippinarum). PLoS One 13:1–23Google Scholar
  94. Uroz S, Chhabra SR, Cámara M, Williams P, Oger P, Dessaux Y (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322CrossRefPubMedGoogle Scholar
  95. Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74:1357–1366CrossRefPubMedPubMedCentralGoogle Scholar
  96. Utari PD, Vogel J, Quax WJ (2017) Deciphering physiological functions of AHL quorum quenching acylases. Front Microbiol 8:1123CrossRefPubMedPubMedCentralGoogle Scholar
  97. Valliappan K, Sun W, Li Z (2014) Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products. Appl Microbiol Biotechnol 98:7365–7377CrossRefPubMedGoogle Scholar
  98. Vinoj G, Vaseeharan B, Thomas S, Spiers AJ, Shanthi S (2014) Quorum-quenching activity of the AHL-lactonase from Bacillus licheniformis DAHB1 inhibits Vibrio biofilm formation in vitro and reduces shrimp intestinal colonisation and mortality. Mar Biotechnol 16:707–715CrossRefPubMedGoogle Scholar
  99. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404CrossRefPubMedGoogle Scholar
  100. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646CrossRefPubMedPubMedCentralGoogle Scholar
  101. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9:e1403PubMedPubMedCentralGoogle Scholar
  103. Zhang Z, Yuen GY (2000) The role of Chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90:384–389CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
  2. 2.Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
  3. 3.Institute for Integrative Biology of the Cell, CEA, CNRS, University Paris-SudUniversity Paris-SaclayGif sur YvetteFrance

Personalised recommendations