Gonadal Transcriptome Analysis of Pacific Abalone Haliotis discus discus: Identification of Genes Involved in Germ Cell Development

  • Lingyun Yu
  • Dongdong Xu
  • Huan Ye
  • Huamei Yue
  • Shioh Ooka
  • Hidehiro Kondo
  • Ryosuke Yazawa
  • Yutaka Takeuchi
Original Article

Abstract

Little is known about the molecular mechanisms governing gonadal developmental processes in abalones. Here, we conducted transcriptome analysis of Pacific abalone Haliotis discus discus for gene discovery in the brain, ovary, testis, and unfertilized eggs. Among the annotated unigenes, 48.6% of unigenes were identified by Venn diagram analysis as having universal or tissue-specific expression. Twenty-three genes with gonad-biased gene ontology (GO) terms were first obtained. Secondly, 36 genes were found by screening known gene names related to germ cell development. Finally, 17 genes were obtained by querying the annotated unigene database for zygotically expressed gonadal genes (ovary and testis) and maternally expressed gonadal genes (ovary, testis, and unfertilized eggs) using keywords related to reproduction. To further verify tissue distribution pattern and subcellular localization of these genes, RT-PCR and in situ hybridization were performed using a unigene encoding a germ cell marker, vasa, as control. The results showed that vasa was expressed mainly in the early developmental stages of germ cells in both sexes. One of the candidate genes, vitelline envelope zona pellucida domain protein 12 (ZP12), was expressed in the primordial germ cells of immature gonad and early developmental stages of germ cells of the adult female. The results obtained from the present study suggest that vasa and ZP12 are involved in germ cell development of Pacific abalone and that ZP12 is an especially useful germ cell-specific marker in immature adults. The current gonadal transcriptome profile is an extensive resource for future reproductive molecular biology studies of this species.

Keywords

RNA-Seq Gonadal transcriptome Germ cell development vasa ZP12 

Notes

Acknowledgements

This work was supported by JSPS Grant-in-Aid for Challenging Exploratory Research Grant Number 15K14802.

Supplementary material

10126_2018_9809_MOESM1_ESM.tif (211 kb)
ESM 1 (TIFF 210 kb)
10126_2018_9809_MOESM6_ESM.jpg (345 kb)
High resolution (JPEG 344 kb)
10126_2018_9809_MOESM2_ESM.tif (218 kb)
ESM 2 (TIFF 217 kb)
10126_2018_9809_MOESM7_ESM.jpg (348 kb)
High resolution (JPEG 347 kb)
10126_2018_9809_MOESM3_ESM.tif (140 kb)
ESM 3 (TIFF 139 kb)
10126_2018_9809_MOESM8_ESM.jpg (241 kb)
High resolution (JPEG 241 kb)
10126_2018_9809_Fig7_ESM.jpg (215 kb)
Fig. S1

(JPEG 215 KB)

10126_2018_9809_MOESM4_ESM.tif (234 kb)
High Resolution Image (TIFF 234 KB)
10126_2018_9809_Fig8_ESM.jpg (380 kb)
Fig. S2

(JPEG 380 KB)

10126_2018_9809_MOESM5_ESM.tif (752 kb)
High Resolution Image (TIFF 752 KB)
10126_2018_9809_Fig9_ESM.jpg (85 kb)
Fig. S3

(JPEG 85.1 KB)

10126_2018_9809_MOESM6_ESM.tif (90 kb)
High Resolution Image (TIFF 89.7 KB)

References

  1. Aagaard JE, Yi XH, MacCoss MJ, Swanson W (2006) Rapidly evolving zona pellucida domain proteins are a major component of the vitelline envelope of abalone eggs. Proc Natl Acad Sci U S A 103:117302–117307CrossRefGoogle Scholar
  2. Aagaard JE, Vacquier VD, MacCoss MJ, Swanson W (2010) ZP domain protein in the abalone egg coat include a paralog of VERL under positive selection that binds lysin and 18-kDa sperm proteins. Mol Biol Evol 27:193–203CrossRefPubMedGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Arai K, Okumura S (2013) Aquaculture-oriented genetic researches in abalone: current status and future perspective. Afr J Biotechnol 12:4044–4052Google Scholar
  5. Bar I, Cummins S, Elizur A (2016) Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the southern Bluefin tuna (Thunnus maccoyii). BMC Genomics 17:217CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barisone GA, Albertali IE, Sánchez M, Cabada MO (2003) The envelopes of amphibian oocytes: physiological modifications in bufo arenrum. Reprod Biol Endocrinol.  https://doi.org/10.1186/1477-7827-1-18
  7. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  8. Bester-van Der Merwe A, Blaauw S, Plessis JD, Roodt-wilding R (2013) Transcriptome-wide single nucleotide polymorphisms (SNPs) for abalone (Haliotis midae): validation and application using goldenGate medium-throughput genotyping assay. Int J Mol Sci 14:19341–19360CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chatchaiphan S, Srisapoome P, Kim J, Devlin RH, Na-Nakorn U (2017) De novo transcriptome characterization and growth-related gene expression profiling of diploid and triploid bighead catfish (Clrias macrocephalus Gunther, 1864). Mar Biotechnol (NY) 19:36–48CrossRefGoogle Scholar
  10. Chen X, Mei J, Wu JJ, Jing J, Ma WG, Zhang JZ, Dan C, Wang WM, Gui JF (2014) A comprehensive transcriptome provides candidate genes for sex determination/differentiation and SSR/SNP markers in yellow catfish. Mar Biotechnol (NY) 17:190–198CrossRefGoogle Scholar
  11. Choi MJ, Kim GD, Kim JM, Lim HK (2015) Differentially-expressed gene assocaited with faster growth of the Pacific abalone, Haliotis discus discus. Int J Mol Sci 16:27520–27534CrossRefPubMedPubMedCentralGoogle Scholar
  12. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefPubMedGoogle Scholar
  13. Cook PA (2014) The worldwide abalone industry. Mod Econ 5:1181–1186CrossRefGoogle Scholar
  14. Darie CC, Biniossek ML, Jovine L, Litscher ES, Wassarman PM (2004) Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry 43:7459–7478CrossRefPubMedGoogle Scholar
  15. Di G, Luo X, You W, Zhao J, Kong X, Ke C (2015) Proteomic analysis of muscle between hybrid abalone and patental lines Haliotis gigantea reeve and Haliotis discus hannai ino. Heredity 114:564–574CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fabioux C, Huvet A, Lelong C, Robert R, Pouvreau S, Daniel JY (2004) Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas. Biochem Biophys Res Commun 320:592–598CrossRefPubMedGoogle Scholar
  17. Fabioux C, Corporeau C, Quillien V, Favrel P, Huvet A (2009) In vivo RNA interference in oyster-vasa silencing inhibits germ cell development. FEBS J 276:2566–2573CrossRefPubMedGoogle Scholar
  18. Franchini P, Van der Merwe M, Roodt-wilding R (2011) Transcriptome characterization of the south African abalone Haliotis midae using sequencing-by-synthesis. BMC Res Notes.  https://doi.org/10.1186/1756-0500-4-59
  19. Fu Y, Jia L, Shi Z, Zhang J, Li W (2017) Gene expression patterns regulating embryogenesis based on the integrated de novo transcriptome assembly of the Japanese flounder. Comp Biochem Physiol Part D Genomics Proteomics 22:58–66CrossRefPubMedGoogle Scholar
  20. Fujimoto T, Nishimura T, Goto-kazeto R, Kawakami Y, Yamaha E, Arai K (2010) Sexual dimorphism of gonadal structure and gene expression in germ cell-deficient loach, a teleost fish. Proc Natl Acad Sci U S A 107:17211–17216CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gleason LU, Burton RS (2015) RNA-Seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol Ecol 24:610–627CrossRefPubMedGoogle Scholar
  22. Grabherr MG, Hass BJ, Yassour M, Levin JZ, Thompson DA (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol (NY) 19:644–652CrossRefGoogle Scholar
  23. Huang ZX, Chen ZS, Ke CH, Zhao J, You WW, Zhang J, Dong WT, Chen J (2012) Pyroseqencing of haliotis diversicolor transcriptome: insights into early development molluscan gene expression. PLoS One 7:e51279CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huang JQ, Chen SL, Liu Y, Shao CW, Lin F, Wang N, Hu QM (2014) Molecular characterization, sexually dimorphic expression, and functional analysis of 3’untranslated region of vasa gene in half-smooth tongue sole (Cynoglossus semilaevis). Theriogenology 82:213–224CrossRefPubMedGoogle Scholar
  25. Hyllner SJ, Westerlund L, Olsson PE, Schopen A (2001) Cloning of rainbow trout egg envelope proteins: members of a unique group of structural proteins. Biol Reprod 64:805–811CrossRefPubMedGoogle Scholar
  26. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1999:138–148Google Scholar
  27. Jiang LK, You WW, Zhang XJ, Xu J, Jiang YL, Wang K, Zhao ZX, Chen BH, Zhao YF, Mahboob S, Al-Ghanim KA, Ke CH, Xu P (2015) Construction of the BAC library of small abalone (Haliotis diversicolor) for gene screening and genome characterization. Mar Biotechnol (NY) 18:49–56CrossRefGoogle Scholar
  28. Kanamori A, Naruse K, Mitani H, Shima A, Hori H (2003) Genomic organization of ZP domain containing egg envelope genes in medaka (Oryzias latipes). Gene 305:35–45CrossRefPubMedGoogle Scholar
  29. Kranz AM, Tollenaere A, Norris BJ, Degnan BM, Degnan SM (2010) Identifying the germline in an equally cleaving mollusk: vasa and nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina. J Exp Zool 314B:267–279CrossRefGoogle Scholar
  30. Kurakawa H, Saito D, Nakamura S, Katoh-Fukui Y, Ohta K, Baba T, Morohashi K, Tanaka M (2007) Germ cells are essential for sexual dimorphism in the medaka gonad. Proc Natl Acad Sci U S A 104:16958–16963CrossRefGoogle Scholar
  31. Li Y, Lai S, Wang R, Zhao Y, Qin H, Jiang L, Li N, Fu Q, Li C (2017a) RNA-Seq analysis of the antioxidant status and immune response of Portunus trituberculatus following aerial exposure. Mar Biotechnol (NY) 19:89–101CrossRefGoogle Scholar
  32. Li JQ, Wang ML, Fang JQ, Liu X, Mao YZ, Liu GM, Bian DP (2017b) Reproductive performance of one-year-old Pacific abalone (Haliotis discus hannai) and its crossbreeding effect on offspring growth and survival. Aquaculture 473:110–114CrossRefGoogle Scholar
  33. Linhartova Z, Satio T, Kaspar V, Rodina M, Praskova E, Haqihara S, Psenicka M (2015) Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide against dead end gene. Theriogenology.  https://doi.org/10.1016/j.theriogenology.07.003
  34. Liu XJ, Wang H, Gong ZY (2006) Tandem-repeated zebrafish zp3 genes possess oocyte-specific promoters and are insensitive to estrogen induction. Biol Reprod 74:1016–1025CrossRefPubMedGoogle Scholar
  35. Lu JG, Zheng M, Zheng JJ, Liu J, Liu YZ, Peng LP, Zhang XF, Wang QS, Luan PX, Mahbooband S, Sun XW (2015) Transcriptomic analyses reveal novel genes with sexually dimorphic expression in yellow catfish (Pelteobagrus fulvidraco) brain. Mar Biotechnol (NY) 17:613–623CrossRefGoogle Scholar
  36. Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M (2013) Reproduction-related genes in the pearl oyster genome. Zool Sci 30:826–850CrossRefPubMedGoogle Scholar
  37. McCombie H, Leud C, Phelipot P, Lapegue S, Boudry P, Gerard A (2005) A complementary method for production of tetraploid Crassostrea gigas using crosses between dipliod and tetraploids with cytochalasin B treatments. Mar Biotechnol (NY) 7:318–330CrossRefGoogle Scholar
  38. Miao Y, Zhang L, Sun Y, Jiao W, Li Y, Sun J, Wang Y, Wang S, Bao S, Liu W (2015) Integration of transcriptomic and proteomic approaches provides a core set of genes for understanding of scallop attachment. Mar Biotechnol (NY) 17:523–532CrossRefGoogle Scholar
  39. Miura T, Miura C, Fukushima E, Iwai T, Celino F, Watanabe N, Uehara M, Ohashi H, Yoshida K, Hosokawa H, Urasaki S, Kuwayama K, Uchimura Y, Sone K, Odawara K, Ido A (2013) In: Watabe S, Maeyama K, Nagasawa H (eds) Recent advances in pearl research. Tokyo, TerrapubGoogle Scholar
  40. Modig C, Modesto T, Canario A, Cerda J, Hofsten J, Olsson P (2006) Molecular characterization and expression pattern of zona pellucida proteins in gilthead seabream (Sparus aurata). Biol Reprod 75:717–725CrossRefPubMedGoogle Scholar
  41. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRefPubMedGoogle Scholar
  42. Nagasawa K, Takeuchi Y, Miwa M, Higuchi K, Morita T, Mitsuboshi T, Miyaki K, Kadomura K, Yoshizaki G (2009) cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis. Fish Sci 75:71–79CrossRefGoogle Scholar
  43. Nam BH, Kwak W, Kim Y, Kim D, Kong HJ, Kim W, Kang J, Park JY, An CM, Moon J, Park CJ, Yu JW, Yoon J, Seo M, Kim K, Kim DK, Lee S, Sung S, Lee C, Shin Y, Jung M, Kang B, Shin G, Ka S, Caetano-Anolles K, Cho S, Kim H (2017) Genome sequence of pacific abalone (Haliotis discus hannai): the first draft genome in family Haliotide. GigaScience 6:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nekrutenko A, Taylor J (2015) Next-generation sequencing date interpretation: enhancing reproducibility and accessibility. Nat Rev Genet 13:667–672CrossRefGoogle Scholar
  45. Obata M, Sano N, Kimata S, Nagasawa K, Yoshizaki G, Komaru A (2010) The proliferation and migration of immature germ cells in the mussel, Mytilus galloprovincialis vasa-like gene (Myvlg) by in situ hybridization. Dev Genes Evol 220:139–149CrossRefPubMedGoogle Scholar
  46. Okumura S, Arai K, Harigaya Y, Eguchi H, Sakai M, Senbokuya H, Fukukawa S, Yamamori K (2007) Highly efficient induction of triploid Pacific abalone Haliotis discus hannai by caffeine treatment. Fish Sci 73:237–243CrossRefGoogle Scholar
  47. Olson DJ, Hulstrand AM, Houston DW (2012) Maternal mRNA knockdown studies: antisense experiments using the host-transfer technique in X. Laevis and X. Tropicalis. Methods Mol Biol 917:167–182CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pertea G, Huang X, Liang F, Antonescu V, Sultana R (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652CrossRefPubMedGoogle Scholar
  49. Plant TM (2015) 60 years of neuroendocrinology: the hypothalamo-pituitary-gonadal axis. J Endocrinol 226:T41–T54CrossRefPubMedPubMedCentralGoogle Scholar
  50. Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1:reviews 1017.1–reviews 1017.6CrossRefGoogle Scholar
  51. Robalino J, Browdy CL, Prior S, Metz A, Parnell P, Gross P, Warr G (2004) Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol 78:10442–1044Google Scholar
  52. Roux A, Lambrechts H, Roodt-wilding R (2013) Reproductive histology of cultured Haliotis midae (linnaeus, 1758) and preliminary evaluation of maturation. J Shellfish Res 32:143–153CrossRefGoogle Scholar
  53. Shao C, Bao B, Xie Z, Chen X, Li B, Jia X, Yao Q, Orti G, Li W, Li X, Hamre K, Xu J, Wang L, Chen F, Tian Y, Schreiber AM, Wang N, Shi Q, Li H, Xiu Y, Li Y, Xu W, Shi Z, Zhang G, Power DM, Wang Q, Schartl M, Chen S (2016) The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nat Genet 49:119–124CrossRefPubMedGoogle Scholar
  54. Shi JW, Sheng JQ, Peng K, Wang JH, Yi WJ, Wu HJ, Gu Q, Hong YJ (2013) Expression pattern of the zona pellucida 3 (ZP3) gene during ovarian development and the location of ZP3 protein in oocytes in natural, wild triploid crucian carp mutant, Carassius auratus var. Pingxiangnensis. Genet Mol Res 12:5640–5650CrossRefPubMedGoogle Scholar
  55. Shiel BP, Hall NE, Cooke IR, Robinson NA, Strugnell JM (2015) De novo characterization of the greenlip abalone transcriptome (Haliotis laevigata) with a focus on the heat shock protein 70 (HSP70) family. Mar Biotechnol (NY) 17:23–32CrossRefGoogle Scholar
  56. Smith J, Paton IR, Hughes DC, Burt DW (2005) Isolation and mapping the chicken zona pellucida genes: an insight into the evolution of orthologous genes in different species. Mol Reprod Dev 70:133–145CrossRefPubMedGoogle Scholar
  57. Song K, Li L, Zhang GF (2017) Bias and correction in RNA-Seq data for marine species. Mar Biotechnol (NY) 19(5):541–550CrossRefGoogle Scholar
  58. Swartz SZ, Chan XY, Lambert JD (2008) Localization of vasa mRNA during early cleavage of the snail llyanassa. Dev Genes Evol 218:107–113CrossRefPubMedGoogle Scholar
  59. Tsutsui K, Ubuka T (2014) Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 1. Discovery of gonadotropin-inhibitory hormone (GnIH) across vertebrates. Gen Comp Endocrinol 205:4–10CrossRefPubMedGoogle Scholar
  60. Valenzuela-Miranda D, Del Río-Portilla MA, Gallardo-Escárate C (2015) Characterization of the growth-related transcriptome in California red abalone (Haliotis rufescens) through RNA-Seq analysis. Mar Genomics 3:199–202CrossRefGoogle Scholar
  61. Van Wielendaele P, Badisco L, Vanden Broeck J (2013) Neuropeptidergic regulation of reproduction in insects. Gen Comp Endocrinol 188:23–34CrossRefPubMedGoogle Scholar
  62. Vicose GC, Viera MP, Bilbao A, Izquierdo MS (2007) Embryonic and larval development of Haliotis tuberculate coccineareeve: an indexed micro-photographic sequence. J Shellfish Res 26:847–854CrossRefGoogle Scholar
  63. Wang M, Liu M, Wang B, Jiang K, Jia Z, Wang L, Wang L (2018) Transcriptomic analysis of exosomal shuttle mRNA in pacific oyster Crassostrea gigas during bacterial stimulation. Fish Shellfish Immunol 74:540–550CrossRefPubMedGoogle Scholar
  64. Wassarman PM, Jovine L, Litscher ES (2001) A profile of fertilization in mammals. Nat Cell Biol 3:E59–E64CrossRefPubMedGoogle Scholar
  65. Yang X, Ikhwanuddin M, Li X, Lin F, Wu Q, Zhang Y, You C, Liu W, Cheng Y, Shi X, Wang S, Ma H (2017) Comparative transcriptome analysis provides insights into differentially expressed genes and long non-coding RNAs between ovary and testis of the mud crab (Scylla paramamosain). Mar Biotechnol (NY).  https://doi.org/10.1007/s10126-017-9784-2
  66. Yoshizaki G, Sakatani S, Tominaga H, Takeuchi T (2000) Cloning and characterization of a vasa-like gene in rainbow trout and its expression in the germ cell lineage. Mol Reprod Dev 55:364–371CrossRefPubMedGoogle Scholar
  67. Yue HM, Li CJ, Du H, Zhang SH, Wei QW (2015) Sequencing and de novo assembly of the gonadal transcriptome of the endangered chinese sturgeon (Acipenser sinensis). PLoS One 10:e0127332CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhang W, Chen J, Yang Y, Tang Y, Shang J, Shen B (2015) A practical comparison of De novo genome assembly software tools for next-generation sequencing technologies. PLoS One 6:e17915CrossRefGoogle Scholar
  69. Zhao ZY, Wu GQ, Wang J, Liu CL, Qiu LH (2013) Next-generation sequencing-based transcriptome analysis of Helicoverpa armigera larvae immune-primed with Photorhabdus luminescens TT01. PLoS One 8:e80146CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zheng P, Wang M, Li C, Sun X, Wang X, Sun Y, Sun S (2017) Insights into deep-sea adaptations and host-symbiont interactions: a comparative transcriptome study on Bathymodiolus mussels and their coastal relatives. Mol Ecol 26(19):5133–5148CrossRefPubMedGoogle Scholar
  71. Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O (2010) Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 165:438–455CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center for Advanced Science and TechnologyTokyo University of Marine Science and TechnologyTateyamaJapan
  2. 2.Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang ProvinceZhoushanChina
  3. 3.Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research InstituteChinese Academy of Fishery SciencesWuhanChina
  4. 4.Japan Ocean Resources Development and Engineering Co., Ltd.KishiwadaJapan
  5. 5.Department of Marine BioscienceTokyo University of Marine Science and TechnologyTokyoJapan
  6. 6.Faculty of FisheriesKagoshima UniversityKagoshimaJapan

Personalised recommendations