Advertisement

Construction of a Genomic Bacterial Artificial Chromosome (BAC) Library for the Prawn Macrobrachium rosenbergii and Initial Analysis of ZW Chromosome-Derived BAC Inserts

  • Ke-Yi Ma
  • Shu-Hui Yu
  • Yu-Xin Du
  • Shi-Qing Feng
  • Liang-Jie Qiu
  • Dai-Yi Ke
  • Mei-Zhong Luo
  • Gao-Feng QiuEmail author
Original Article

Abstract

Knowledge on sex determination has proven valuable for commercial production of the prawn Macrobrachium rosenbergii due to sex dimorphism of the male and female individuals. Previous studies indicated that prawn sex is determined by a ZW–ZZ chromosomal system, but no genomic information is available for the sex chromosome. Herein, we constructed a genomic bacterial artificial chromosome (BAC) library and identified the ZW-derived BAC clones for initial analysis of the sex chromosomal DNA sequence. The arrayed BAC library contains 200,448 clones with average insert size of 115.4 kb, corresponding to ∼ 4× coverage of the estimated 5.38 Gb genome. Based on a short female-specific marker, a Z- and a W-fragment were retrieved with the genomic walking method. Screening the BAC library using a ZW-specific marker as probe resulted in 12 positive clones. From these, a Z-derived (P331M17) and a W-derived (P122G2) BAC clones were randomly selected and sequenced by PacBio method. We report the construction of a large insert, deep-coverage, and high-quality BAC library for M. rosenbergii that provides a useful resource for positional cloning of target genes, genomic organization, and comparative genomics analysis. Our study not only confirmed the ZW/ZZ system but also discovered sex-linked genes on ZW chromosomes for the first time, contributing to a comprehensive understanding of the genomic structure of sex chromosomes in M. rosenbergii.

Keywords

Macrobrachium rosenbergii BAC Sex chromosome Genome size 

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (project number 2018YFD0900201), the Natural Science Foundation of China (project number 31772841), the Shanghai Sailing Program (project number 17YF1408000), and the Special Fund for the Development of Science and Technology of Shanghai Ocean University (project number A2-0203-17-100201).

Compliance with Ethical Standards

Competing Interests

The authors have declared that no competing interest exists.

Supplementary material

10126_2018_9873_MOESM1_ESM.xlsx (16 kb)
Table S1 Sequence comparison of the W- and Z-derived chromosome regions. (XLSX 15 kb)
10126_2018_9873_MOESM2_ESM.xlsx (15 kb)
Table S2 Deletions with length larger than 100 bp on the BAC inserts revealed by MAUVE. (XLSX 14 kb)

References

  1. Aflalo ED, Hoang TTT, Nguyen VH, Lam Q, Nguyen DM, Trinh QS, Raviv S, Sagi A (2006) A novel two-step procedure for mass production of all-male populations of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 256:468–478CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  3. Becking T, Giraud I, Raimond M, Moumen B, Chandler C, Cordaux R, Gilbert C (2017) Diversity and evolution of sex determination systems in terrestrial isopods. Sci Rep 7:1084CrossRefGoogle Scholar
  4. Bonami JR, Widada JS (2011) Viral diseases of the giant fresh water prawn Macrobrachium rosenbergii: a review. J Invertebr Pathol 106:131–142CrossRefGoogle Scholar
  5. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33:228–237CrossRefGoogle Scholar
  6. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128CrossRefGoogle Scholar
  7. Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff JN, Hong Y, Li Q, Sha Z, Zhou H, Xie M, Yu Q, Liu Y, Xiang H, Wang N, Wu K, Yang C, Zhou Q, Liao X, Yang L, Hu Q, Zhang J, Meng L, Jin L, Tian Y, Lian J, Yang J, Miao G, Liu S, Liang Z, Yan F, Li Y, Sun B, Zhang H, Zhang J, Zhu Y, Du M, Zhao Y, Schartl M, Tang Q, Wang J (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46:253–260CrossRefGoogle Scholar
  8. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569CrossRefGoogle Scholar
  9. Cui Z, Hui M, Liu Y, Song C, Li X, Li Y, Liu L, Shi G, Wang S, Li F, Zhang X, Liu C, Xiang J, Chu KH (2015) High-density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab Eriocheir sinensis. Heredity 115:206–215CrossRefGoogle Scholar
  10. Dalton JE, Fear JM, Knott S, Baker BS, McIntyre LM, Arbeitman MN (2013) Male-specific fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains. BMC Genomics 14:659CrossRefGoogle Scholar
  11. Dan C, Mei J, Wang D, Gui JF (2013) Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish. Int J Biol Sci 9:1043–1049CrossRefGoogle Scholar
  12. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403CrossRefGoogle Scholar
  13. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147CrossRefGoogle Scholar
  14. Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128CrossRefGoogle Scholar
  15. Faber-Hammond JJ, Phillips RB, Brown KH (2015) Comparative analysis of the shared sex-determination region (SDR) among salmonid fishes. Genome Biol Evol 7:1972–1987CrossRefGoogle Scholar
  16. Ford AT (2008) Can you feminise a crustacean? Aquat Toxicol 88:316–321CrossRefGoogle Scholar
  17. Gatto KP, Mattos JV, Seger KR, Lourenco LB (2018) Sex chromosome differentiation in the frog genus Pseudis involves satellite DNA and chromosome rearrangements. Front Genet 9:301CrossRefGoogle Scholar
  18. Genet C, Dehais P, Palti Y, Gao G, Gavory F, Wincker P, Quillet E, Boussaha M (2011) Analysis of BAC-end sequences in rainbow trout: content characterization and assessment of synteny between trout and other fish genomes. BMC Genomics 12:314CrossRefGoogle Scholar
  19. Gong SC, Yang XW, Li CJ, Heintz N (2002) Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6K gamma origin of replication. Genome Res 12:1992–1998CrossRefGoogle Scholar
  20. Gregory TR (2018) Animal genome size database. http://www.genomesize.com. Accessed 15 Sept 2018
  21. Jiang XH, Qiu GF (2013) Female-only sex-linked amplified fragment length polymorphism markers support ZW/ZZ sex determination in the giant freshwater prawn Macrobrachium rosenbergii. Anim Genet 44:782–785CrossRefGoogle Scholar
  22. Jiang L, You W, Zhang X, Xu J, Jiang Y, Wang K, Zhao Z, Chen B, Zhao Y, Mahboob S, Al-Ghanim KA, Ke C, Xu P (2016) Construction of the BAC library of small abalone (Haliotis diversicolor) for gene screening and genome characterization. Mar Biotechnol 18:49–56CrossRefGoogle Scholar
  23. Katagiri T, Asakawa S, Hirono I, Aoki T, Shimizu N (2000) Genomic bacterial artificial chromosome library of the Japanese flounder Paralichthys olivaceus. Mar Biotechnol 2:571–576CrossRefGoogle Scholar
  24. Koerich LB, Dupim EG, Faria LL, Dias FA, Dias AF, Trindade GS, Mesquita RD, Carvalho AB (2016) First report of Y-linked genes in the kissing bug Rhodnius prolixus. BMC Genomics 17:100CrossRefGoogle Scholar
  25. Koyama T, Asakawa S, Katagiri T, Shimizu A, Fagutao FF, Mavichak R, Santos MD, Fuji K, Sakamoto T, Kitakado T, Kondo H, Shimizu N, Aoki T, Hirono I (2010) Hyper-expansion of large DNA segments in the genome of kuruma shrimp, Marsupenaeus japonicus. BMC Genomics 11:141CrossRefGoogle Scholar
  26. Lecher P, Defaye D, Noel P (1995) Chromosomes and nuclear DNA of Crustacea. Invertebr Reprod Dev 27:85–114CrossRefGoogle Scholar
  27. Lee TH, Naitoh N, Yamazaki F (2004) Chromosome studies on the mitten crabs Eriocheir japonica and E. sinensis. Fish Sci 70:211–214CrossRefGoogle Scholar
  28. Li Y, Liu S, Qin Z, Waldbieser G, Wang R, Sun L, Bao L, Danzmann RG, Dunham R, Liu Z (2015) Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish. DNA Res 22:39–52CrossRefGoogle Scholar
  29. Liu H, Jiang Y, Wang S, Ninwichian P, Somridhivej B, Xu P, Abernathy J, Kucuktas H, Liu Z (2009) Comparative analysis of catfish BAC end sequences with the zebrafish genome. BMC Genomics 10:592CrossRefGoogle Scholar
  30. Liu L, Cui Z, Xia SCW, Liu Y, Hui M, Wang CL (2016a) Flow cytometric analysis of DNA content for four commercially important crabs in China. Acta Oceanol Sin 35:7–11CrossRefGoogle Scholar
  31. Liu ZJ, Liu SK, Yao J, Bao LS, Zhang JR, Li Y, Jiang C, Sun LY, Wang RJ, Zhang Y, Zhou T, Zeng QF, Fu Q, Gao S, Li N, Koren S, Jiang Y, Zimin A, Xu P, Phillippy AM, Geng X, Song L, Sun FY, Li C, Wang XZ, Chen A, Jin YL, Yuan ZH, Yang Y, Tan S, Peatman E, Lu J, Qin Z, Dunham R, Li Z, Sonstegard T, Feng J, Danzmann RG, Schroeder S, Scheffler B, Duke MV, Ballard L, Kucuktas H, Kaltenboeck L, Liu H, Armbruster J, Xie Y, Kirby ML, Tian Y, Flanagan ME, Mu W, Waldbieser GC (2016b) The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7:11757CrossRefGoogle Scholar
  32. Lubieniecki KP, Lin S, Cabana EI, Li J, Lai YYY, Davidson WS (2015) Genomic instability of the sex-determining locus in Atlantic salmon (Salmo salar). G3: Genes Genomes Genet 5:2513–2522CrossRefGoogle Scholar
  33. Luo MZ, Wing RA (2003) An improved method for plant BAC library construction. Methods Mol Biol 236:3–20Google Scholar
  34. Luo MZ, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162CrossRefGoogle Scholar
  35. Luo MZ, Kim HR, Kudrna D, Sisneros NB, Lee SJ, Mueller C, Collura K, Zuccolo A, Buckingham EB, Grim SM, Yanagiya K, Inoko H, Shiina T, Flajnik MF, Wing RA, Ohta Y (2006) Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey. BMC Genomics 7:106CrossRefGoogle Scholar
  36. Ma KY, Qiu GF, Feng JB, Li JL (2012) Transcriptome analysis of the oriental river prawn, Macrobrachium nipponense using 454 pyrosequencing for discovery of genes and markers. PLoS One 7:e39727CrossRefGoogle Scholar
  37. Ma KY, Liu ZQ, Lin JY, Li JL, Qiu GF (2016) Molecular characterization of a novel ovary-specific gene fem-1 homolog from the oriental river prawn, Macrobrachium nipponense. Gene 575:244–252CrossRefGoogle Scholar
  38. Malecha SR, Nevin PA, Ha P, Barck LE, Lamadrid-Rose Y, Masuno S, Hedgecock D (1992) Sex-ratios and sex-determination in progeny from crosses of surgically sex-reversed freshwater prawns, Macrobrachium rosenbergii. Aquaculture 105:201–218CrossRefGoogle Scholar
  39. Mawaribuchi S, Takahashi S, Wada M, Uno Y, Matsuda Y, Kondo M, Fukui A, Takamatsu N, Taira M, Ito M (2017) Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis. Dev Biol 426:393–400CrossRefGoogle Scholar
  40. Pan ZJ, Li XY, Zhou FJ, Qiang XG, Gui JF (2015) Identification of sex-specific markers reveals male heterogametic sex determination in Pseudobagrus ussuriensis. Mar Biotechnol 17:441–451CrossRefGoogle Scholar
  41. Rees DJ, Dufresne F, Glemet H, Belzile C (2007) Amphipod genome sizes: first estimates for Arctic species reveal genomic giants. Genome 50:151–158CrossRefGoogle Scholar
  42. Rheinsmith EL, Hinegardner R, Bachmann K (1974) Nuclear DNA amounts in Crustacea. Comp Biochem Physiol B Biochem Mol Biol 15:343–348CrossRefGoogle Scholar
  43. Shao CW, Chen SL, Scheuring CF, Xu JY, Sha ZX, Dong XL, Zhang HB (2010) Construction of two BAC libraries from half-smooth tongue sole Cynoglossus semilaevis and identification of clones containing candidate sex-determination genes. Mar Biotechnol 12:558–568CrossRefGoogle Scholar
  44. Shi X, Zeng HY, Xue YD, Luo MZ (2011) A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange. Plant Methods 7:33CrossRefGoogle Scholar
  45. Soler L, Conte MA, Katagiri T, Howe AE, Lee BY, Amemiya C, Stuart A, Dossat C, Poulain J, Johnson J, Di Palma F, Lindblad-Toh K, Baroiller JF, D'Cotta H, Ozouf-Costaz C, Kocher TD (2010) Comparative physical maps derived from BAC end sequences of tilapia (Oreochromis niloticus). BMC Genomics 11:636CrossRefGoogle Scholar
  46. Staelens J, Rombaut D, Vercauteren I, Argue B, Benzie J, Vuylsteke M (2008) High-density linkage maps and sex-linked markers for the black tiger shrimp (Penaeus monodon). Genetics 179:917–925CrossRefGoogle Scholar
  47. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467CrossRefGoogle Scholar
  48. Traut W, Vogel H, Gloeckner G, Hartmann E, Heckel DG (2013) High-throughput sequencing of a single chromosome: a moth W chromosome. Chromosom Res 21:491–505CrossRefGoogle Scholar
  49. Tremblay JJ, Viger RS (2003) A mutated form of steroidogenic factor 1 (SF-1 G35E) that causes sex reversal in humans fails to synergize with transcription factor GATA-4. J Biol Chem 278:42637–42642CrossRefGoogle Scholar
  50. Vale L, Dieguez R, Sanchez L, Martinez P, Vinas A (2014) A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus). Mol Biol Rep 41:1501–1509CrossRefGoogle Scholar
  51. Ventura T, Manor R, Aflalo ED, Weil S, Raviv S, Glazer L, Sagi A (2009) Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology 150:1278–1286CrossRefGoogle Scholar
  52. Ventura T, Aflalo ED, Weil S, Kashkush K, Sagi A (2011) Isolation and characterization of a female-specific DNA marker in the giant freshwater prawn Macrobrachium rosenbergii. Heredity 107:456–461CrossRefGoogle Scholar
  53. Wang Y, Lu Y, Zhang Y, Ning Z, Li Y, Zhao Q, Lu H, Huang R, Xia X, Feng Q, Liang X, Liu K, Zhang L, Lu T, Huang T, Fan D, Weng Q, Zhu C, Lu Y, Li W, Wen Z, Zhou C, Tian Q, Kang X, Shi M, Zhang W, Jang S, Du F, He S, Liao L, Li Y, Gui B, He H, Ning Z, Yang C, He L, Luo L, Yang R, Luo Q, Liu X, Li S, Huang W, Xiao L, Lin H, Han B, Zhu Z (2015) The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet 47:625–631CrossRefGoogle Scholar
  54. Xu P, Wang S, Liu L, Peatman E, Somridhivej B, Thimmapuram J, Gong G, Liu Z (2006) Channel catfish BAC-end sequences for marker development and assessment of syntenic conservation with other fish species. Anim Genet 37:321–326CrossRefGoogle Scholar
  55. Xu P, Wang J, Wang J, Cui R, Li Y, Zhao Z, Ji P, Zhang Y, Li J, Sun X (2011a) Generation of the first BAC-based physical map of the common carp genome. BMC Genomics 12:537CrossRefGoogle Scholar
  56. Xu P, Li J, Li Y, Cui R, Wang J, Wang J, Zhang Y, Zhao Z, Sun X (2011b) Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences. BMC Genomics 12:188CrossRefGoogle Scholar
  57. Zarkower D, Hodgkin J (1992) Molecular analysis of the C. elegans sex-determining gene tra-1: a gene encoding two zinc finger proteins. Cell 70:237–249CrossRefGoogle Scholar
  58. Zhang LS, Yang CJ, Zhang Y, Li L, Zhang XM, Zhang QL, Xiang JH (2007) A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates. Genetica 131:37–49CrossRefGoogle Scholar
  59. Zhang Y, Zhang X, Scheuring CF, Zhang HB, Huan P, Li F, Xiang J (2008) Construction and characterization of two bacterial artificial chromosome libraries of Zhikong scallop, Chlamys farreri Jones et Preston, and identification of BAC clones containing the genes involved in its innate immune system. Mar Biotechnol 10:358–365CrossRefGoogle Scholar
  60. Zhang XJ, Zhang Y, Scheuring C, Zhang HB, Huan P, Wang B, Liu CZ, Li FH, Liu B, Xiang JH (2010) Construction and characterization of a bacterial artificial chromosome (BAC) library of Pacific white shrimp, Litopenaeus vannamei. Mar Biotechnol 12:141–149CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ke-Yi Ma
    • 1
  • Shu-Hui Yu
    • 1
  • Yu-Xin Du
    • 1
  • Shi-Qing Feng
    • 1
  • Liang-Jie Qiu
    • 2
  • Dai-Yi Ke
    • 1
  • Mei-Zhong Luo
    • 2
  • Gao-Feng Qiu
    • 1
    • 3
    Email author
  1. 1.Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean UniversityShanghaiPeople’s Republic of China
  2. 2.College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  3. 3.College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiPeople’s Republic of China

Personalised recommendations