Advertisement

Lipidomic insights to understand membrane dynamics in response to vanillin in Mycobacterium smegmatis

  • Sharda Sharma
  • Saif HameedEmail author
  • Zeeshan FatimaEmail author
Original Article

Abstract

Considering the emergence of multidrug resistance (MDR) in prevalent human pathogen, Mycobacterium tuberculosis (MTB), there is parallel spurt in development of novel strategies aimed to disrupt MDR. The cell envelope of MTB comprises a wealth of lipid moieties contributing towards long-term survival of pathogen that could be exploited as efficient antitubercular target owing to advancements made in mass spectrometry–based lipidomics technology. This study aimed to utilize the lipidomics approach to unveil several lipid associated changes in response to natural antimycobacterial compound vanillin (Van) in Mycobacterium smegmatis, a surrogate for MTB. Lipidomic analyses revealed that that Van alters the composition of fatty acid (FA), glycerolipid (GL), glycerophospholipid (GP), and saccharolipids (SL). Furthermore, Van leads to potentiation of ampicillin and displayed additive effect. The differential expressions of various lipid biosynthetic pathway genes by RT-PCR corroborated with the lipidomics data. Lastly, we demonstrated enhanced survival of Mycobacterium-infected Caenorhabditis elegans model in presence of Van. Thus, lipidomics approach provided detailed insight into mechanisms of membrane disruption by Van in Mycobacterium smegmatis. Our work offers the basis of further understanding the regulation of lipid homeostasis in MTB so that better therapeutic targets could be identified to combat MDR.

Keywords

Mycobacterium Vanillin Lipids Cell wall Fatty acid Glycerolipids Glycerophospholipids 

Notes

Acknowledgments

We thank Anindya Ghosh for providing wild-type C. elegans (N2) and Escherichia coli OP50 strains as generous gift. We are grateful to Sarman Singh and Pramod Mehta for providing M. smegmatis and M. marinum strains as generous gifts, respectively. We thank Sanjeev Kanojiya for assisting us in mass spectrometry experiments. We thank Varatharajan Sabareesh for his intellectual support in lipidome data analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10123_2019_99_MOESM1_ESM.docx (14 mb)
ESM 1 (DOCX 14292 kb)
10123_2019_99_MOESM2_ESM.xls (50 kb)
ESM 2 Spread sheet depicting the data obtained from MS-LAMP at 0.5 WR in Control cells for total lipids. (XLS 50 kb)
10123_2019_99_MOESM3_ESM.xls (50 kb)
ESM 3 Spread sheet depicting the data obtained from MS-LAMP at 0.5 WR in Van treated cells for total lipids (XLS 50 kb)
10123_2019_99_MOESM4_ESM.xls (42 kb)
ESM 4 Spread sheet depicting the data obtained from MS-LAMP at 0.5 WR in Control cells for cell wall lipids (XLS 41 kb)
10123_2019_99_MOESM5_ESM.xls (34 kb)
ESM 5 Spread sheet depicting the data obtained from MS-LAMP at 0.5 WR in Van treated cells for cell wall lipids. (XLS 33 kb)
10123_2019_99_MOESM6_ESM.xls (74 kb)
ESM 6 Spread sheet depicting the data obtained from MS-LAMP at 1 WR in Control cells for total lipids. (XLS 74 kb)
10123_2019_99_MOESM7_ESM.xls (80 kb)
ESM 7 Spread sheet depicting the data obtained from MS-LAMP at 1 WR in Van treated cells for total lipids. (XLS 80 kb)
10123_2019_99_MOESM8_ESM.xls (44 kb)
ESM 8 Spread sheet depicting the data obtained from MS-LAMP at 1 WR in Control cells for cell wall lipids. (XLS 44 kb)
10123_2019_99_MOESM9_ESM.xls (42 kb)
ESM 9 Spread sheet depicting the data obtained from MS-LAMP at 1 WR in Van treated cells for cell wall lipids. (XLS 42 kb)

References

  1. Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M (2014) The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 49:361–399CrossRefPubMedPubMedCentralGoogle Scholar
  2. Belardinelli JM, Larrouy-Maumus G, Jones V, Sorio de Carvalho LP, McNeil MR, Jackson M (2014) Biosynthesis and translocation of unsulfated acyltrehaloses in Mycobacterium tuberculosis. J Biol Chem 289:27952–27965CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetic 77:71–94Google Scholar
  4. Chauhan P, Reddy PV, Singh R, Jaisinghani N, Gandotra S, Tyagi AK (2013) Secretory phosphatases deficient mutant of Mycobacterium tuberculosis imparts protection at the primary site of infection in guinea pigs. PLoS One 8:e77930CrossRefPubMedPubMedCentralGoogle Scholar
  5. Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H (2013) Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Factories 12:9CrossRefGoogle Scholar
  6. Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE (2006) A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis *. J Biol Chem 281:3866–3875CrossRefPubMedGoogle Scholar
  7. Foreman-Wykert AK, Weinrauch Y, Elsbach P, Weiss J (1999) Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against gram-positive bacteria. J Clin Invest 103:715–721CrossRefPubMedPubMedCentralGoogle Scholar
  8. Galbadage T, Shepherd TF, Cirillo SL, Gumienny TL, Cirillo JD (2016) Caenorhabditis elegans p38 MAPK gene plays a key role in protection from mycobacteria. Microbiologyopen 5:436–452CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ghazaei C (2018) Mycobacterium tuberculosis and lipids: insights into molecular mechanisms from persistence to virulence. J Res Med Sci 23:63CrossRefPubMedPubMedCentralGoogle Scholar
  10. Griffiths WJ, Wang Y (2009) Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev 38:1882–1896CrossRefPubMedGoogle Scholar
  11. Grzegorzewicz AE, Pham H, Gundi VA, Scherman MS, North EJ, Hess T, Jones V, Gruppo V, Born SE, Korduláková J, Chavadi SS, Morisseau C, Lenaerts AJ, Lee RE, McNeil MR, Jackson M (2012) Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8:334–341CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hae-Eun HP, Yoonji J, Lee Seung-Jae V (2017) Survival assays using Caenorhabditis elegans. Mol Cell 40:90–99CrossRefGoogle Scholar
  13. Hunt PR (2017) The C. elegans model in toxicity testing. J Appl Toxicol 37:50–59CrossRefPubMedGoogle Scholar
  14. Jackson M (2014) The mycobacterial cell envelope-lipids. Cold Spring Harb Perspect Med 4:a021105CrossRefPubMedPubMedCentralGoogle Scholar
  15. Katayama N, Takano H, Sugiyama M, Takio S, Sakai A, Tanaka K, Kuroiwa H, Ono K (2003) Effects of antibiotics that inhibit the bacterial peptidoglycan synthesis pathway on mosschloroplast division. Plant Cell Physiol 44:776–781CrossRefPubMedGoogle Scholar
  16. Kinsella RJ, Fitzpatrick DA, Creevey CJ, McInerney JO (2003) Fatty acid biosynthesis in Mycobacterium tuberculosis: lateral gene transfer, adaptive evolution, and gene duplication. Proc Natl Acad Sci U S A 100:10320–10325CrossRefPubMedPubMedCentralGoogle Scholar
  17. Layre E, Sweet L, Hong S, Madigan CA, Desjardins D, Young DC, Cheng TY, Annand JW, Kim K, Shamputa IC, McConnell MJ, Debono CA, Behar SM, Minnaard AJ, Murray M, Barry CE, Matsunaga I, Moody DB (2011) A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem Biol 18:1537–1549CrossRefPubMedPubMedCentralGoogle Scholar
  18. Low KL, Rao PS, Shui G, Bendt AK, Pethe K, Dick T, Wenk MR (2009) Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guerin. J Bacteriol 191:5037–5043CrossRefPubMedPubMedCentralGoogle Scholar
  19. Madacki J, Laval F, Grzegorzewicz A, Lemassu A, Záhorszká M, Arand M, McNeil M, Daffé M, Jackson M, Lanéelle MA, Korduláková J (2018) Impact of the epoxide hydrolase EphD on the metabolism of mycolic acids in mycobacteria. J Biol Chem 293:5172–5184CrossRefPubMedPubMedCentralGoogle Scholar
  20. Murphy RC, Gaskell SJ (2011) New applications of mass spectrometry in lipid analysis. J Biol Chem 286:25427–25433CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nass R, Hamza I (2007) The nematode C. elegans as an animal model to explore toxicology in vivo: solid and axenic growth culture conditions and compound exposure parameters. Curr Protoc Toxicol chapter 1: Unit1 9.  https://doi.org/10.1002/0471140856.tx0109s31.
  22. National Committee for Clinical and Laboratory Standards (2008) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, vol. 28, no. 14, Approved standard M27-A3. National Committee for Clinical and Laboratory Standards, Wayne, Ill, USAGoogle Scholar
  23. Pal R, Hameed S, Kumar P, Singh S, Fatima Z (2015) Comparative lipidome profile of sensitive and resistant Mycobacterium tuberculosis strain. Int J Curr Microbiol App Sci 2015:189–197Google Scholar
  24. Pal R, Hameed S, Fatima Z (2017) Lipidomics: novel strategy to conquer antimicrobial resistance. Antimicrobial Research: Novel bioknowledge and educational programs. (Microbiology Book Series, number # 6). Formatex Research Center, Spain. Ed: A. Mendez-Vilas. pp: 644–650.Google Scholar
  25. Pal R, Hameed S, Sabareesh V, Kumar P, Singh S, Fatima Z (2018) Investigation into isoniazid treated Mycobacterium tuberculosis by electrospray mass spectrometry reveals new insights into its lipid composition. J Pathog 2018:1454316PubMedPubMedCentralGoogle Scholar
  26. Pal R, Hameed S, Kumar P, Singh S, Fatima Z (2019) Understanding lipidomic basis of iron limitation induced chemosensitization of drug resistant Mycobacterium tuberculosis. 3 Biotech 9:122CrossRefPubMedGoogle Scholar
  27. Pawelczyk J, Viljoen A, Kremer L, Dziadek J (2017) The influence of AccD5 on AccD6 carboxyltransferase essentiality in pathogenic and non-pathogenic Mycobacterium. Sci Rep 7:42692CrossRefPubMedPubMedCentralGoogle Scholar
  28. Portevin D, Sukumar S, Coscolla M, Shui G, Li B, Guan XL, Bendt AK, Young D, Gagneux S, Wenk MR (2014) Lipidomics and genomics of Mycobacterium tuberculosis reveal lineage-specific trends in mycolic acid biosynthesis. Microbiologyopen 3:823–835CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rodríguez JE, Ramírez AS, Salas LP, Helguera-Repetto C, Gonzalez-y-Merchand J, Soto CY, Hernández-Pando R (2013) Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection. PLoS One 8:e58378CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sabareesh V, Singh G (2013) Mass spectrometry based lipid(ome) analyzer and molecular platform: a new software to interpret and analyze electrospray and/or matrix-assisted laser desorption/ ionization mass spectrometric data of lipids: a case study from Mycobacterium tuberculosis. J Mass Spectrom 48:465–477CrossRefPubMedGoogle Scholar
  31. Sartain MJ, Dick DL, Rithner CD, Crick DC, Belisle JT (2011) Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. J Lipid Res 52:861–872CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sharma S, Pal R, Hameed S, Fatima Z (2016) Antimycobacterial mechanism of vanillin involves disruption of cell-surface integrity; virulence attributes, and iron homeostasis. Int J Mycobacteriol 5:460–468CrossRefPubMedGoogle Scholar
  33. Sharma S, Hans S, Hameed S, Fatima Z (2017) Elucidating the mechanism of vanillin induced mycobacterial membrane disruption: implications of lipid alterations. SOJ Microbiol Infect Dis 5:1–7Google Scholar
  34. Sharma S, Hameed S, Fatima Z (2018) Mycobacterial lipids as potential drug target to combat tuberculosis, “Understanding microbial pathogens: current knowledge and educational ideas on antimicrobial research” Microbiology Book Series 7. Formatex Research Center, Spain. Ed: A. Mendez-Vilas. Pp: 200–207.Google Scholar
  35. Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KV (2012) Mycobacterium tuberculosis driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12:669–681CrossRefPubMedGoogle Scholar
  36. Singh P, Rao RN, Reddy JR, Prasad RB, Kotturu SK, Ghosh S, Mukhopadhyay S (2016) PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence. Sci Rep 6:21624CrossRefPubMedPubMedCentralGoogle Scholar
  37. Škovierová H, Larrouy-Maumus G, Zhang J, Kaur D, Barilone N, Korduláková J, Gilleron M, Guadagnini S, Belanová M, Prevost MC, Gicquel B, Puzo G, Chatterjee D, Brennan PJ, Nigou J, Jackson M (2009) AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology 19:1235–1247CrossRefPubMedPubMedCentralGoogle Scholar
  38. Watanabe M, Aoyagi Y, Ridell M, Minnikin DE (2001) Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147:1825–37CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Amity Institute of BiotechnologyAmity University HaryanaGurugram (Manesar)India

Personalised recommendations