International Microbiology

, Volume 22, Issue 1, pp 1–6 | Cite as

Re-purposing is needed for beneficial bugs, not for the drugs

  • Hari Ram
  • Syed G DastagerEmail author


Between 150 and 200 species of plants, insects, birds or mammals go extinct every day. We do not have any idea what the global extinction rate for microorganisms is. What is clear is that we have already lost a maximum number of the microbes that used to live in and on our skins. Many of our microbial partners are facing extinction as we apply selection pressures that are unprecedented in our long-standing relationships. Recent estimates are that we have lost at least one third of the diversity of our skin microbiome. Every day, most of us bath or shower in water that contains chlorine or fluorine; these additives do a great job of killing pathogenic microbes, but they are probably not helping our skin microbiome. Most of the people apply cosmetic products every day, as these products contain preservatives that prevent microbial growth on the shelf. These same chemicals may well kill microbes on the skin. The daily use of high-pH soaps probably will not help microbial life that is adapted to living on the skin’s natural pH of 5. The rise in the rate of C-section births from around 5% in 1970 to more than 30% today is likely to be a contributing factor. Vaginal microbes seed our skins at birth and C-sections disrupt this process. The overuse of broad-spectrum antibiotics has contributed to the loss of our microbial partners in all body sites and the skin is no exception. It is now clear that skin is an ecosystem that is dependent on commensal microbes for optimal health. In general, a diverse ecosystem is a healthy ecosystem that is robust in the face of change. Low-diversity ecosystems are more fragile and susceptible to dysbiosis. Eczema and acne rates have increased rapidly over the last 50 years. These diseases are almost unknown in hunter-gatherer communities. Now, we face two exciting challenges: finding out which species matter and how to get them back.


Microbiome Drugs Probiotics Dysbiosis 



The authors acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, and the Director of CSIR-National Chemical Laboratory, Pune, India.


  1. Alvarez-Olmos MI, Oberhelman RA (2001) Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin Infect Dis 32:1567–1576 CrossRefGoogle Scholar
  2. Belizário JE, Napolitano M (2015) Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol 6(1050).
  3. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143. CrossRefGoogle Scholar
  4. Callewaert C, Lambert J, Van de Wiele T (2017) Towards a bacterial treatment for armpit malodour. Exp Dermatol 26:388–391. CrossRefGoogle Scholar
  5. Chen T, Dewhirst F (2015) Human Oral Microbiome Database (HOMD). In: Nelson KE (ed) Encyclopedia of metagenomics. Springer, Boston, MA, pp 271–291Google Scholar
  6. Chu H, Khosravi A, Kusumawardhani IP, Kwon AH, Vasconcelos AC, Cunha LD, Mayer AE, Shen Y, Wu WL, Kambal A, Targan SR (2016) Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352:1116–1120. CrossRefGoogle Scholar
  7. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, Magris M, Hidalgo G, Contreras M, Noya-Alarcón Ó, Lander O (2015) The microbiome of uncontacted Amerindians. Sci Adv 1(3):e1500183. CrossRefGoogle Scholar
  8. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192:5002–5017. CrossRefGoogle Scholar
  9. Donia MS, Fischbach MA (2015) Small molecules from the human microbiota. Science 349:1254766. CrossRefGoogle Scholar
  10. Feldman B (2017) The oral microbiome is critical in understanding health and disease. Accessed 15 September 2018
  11. Gupta S, Allen-Vercoe E, Petrof EO (2016) Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol 9(2):229–239. CrossRefGoogle Scholar
  12. Hedge DD, Strain JD, Heins JR, Farver DK (2018) New advances in the treatment of Clostridium difficile infection (CDI). Ther Clin Risk Manag 4(5):949–964 Google Scholar
  13. Holz C, Benning J, Schaudt M, Heilmann A, Schultchen J, Goelling D, Lang C (2017) Novel bioactive from Lactobacillus brevis DSM17250 to stimulate the growth of Staphylococcus epidermidis: a pilot study. Benefic Microbes 8:121–131. CrossRefGoogle Scholar
  14. Jangi S, Gandhi R, Cox LM, Li N, Von Glehn F, Yan R, Patel B, Mazzola MA, Liu S, Glanz BL, Cook S (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7(12015).
  15. Khanna S, Vazquez-Baeza Y, González A, Weiss S, Schmidt B, Muñiz-Pedrogo DA, Rainey JF, Kammer P, Nelson H, Sadowsky M, Khoruts A (2017) Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Microbiome 5(55).
  16. Klimesova K, Jiraskova Zakostelska Z, Tlaskalova-Hogenova H (2018) Oral bacterial and fungal microbiome impacts colorectal carcinogenesis. Front Microbiol 9(774).
  17. Lomholt HB, Kilian M (2010) Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne. PLoS One 5::12277. CrossRefGoogle Scholar
  18. Monique L (2017) Fermented milk, probiotics and yeast membrane constituents may prevent colorectal cancer. Accessed 15 September 2018
  19. Myles IA, Williams KW, Reckhow JD, Jammeh ML, Pincus NB, Sastalla I, Saleem D, Stone KD, Datta SK (2016) Transplantation of human skin microbiota in models of atopic dermatitis. JCI insight 1(10).
  20. Nakatsuji T, Chen TH, Narala S, Chun KA, Yun T, Shafiq F, Kotol PF, Bouslimani A, Melnik AV, Latif H, Kim JN (2017) Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 9:eaah4680. CrossRefGoogle Scholar
  21. Nodake Y, Matsumoto S, Miura R, Honda H, Ishibashi G, Matsumoto S, Dekio I, Sakakibara R (2015) Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe–a blinded randomized clinical trial. J Dermatol Sci 79(2):119–126. CrossRefGoogle Scholar
  22. Olle B (2013) Medicines from microbiota. Nat Biotechnol 31:309–315CrossRefGoogle Scholar
  23. Peng Z, Ling L, Stratton CW, Li C, Polage CR, Wu B, Tang YW (2018) Advances in the diagnosis and treatment of Clostridium difficile infections. Emerg Microbes Infect 7(15).
  24. Rogers GB (2015) Germs and joints: the contribution of the human microbiome to rheumatoid arthritis. Nat Med 21:839–841. CrossRefGoogle Scholar
  25. Sampson TR, Mazmanian SK (2015) Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17(5):565–576. CrossRefGoogle Scholar
  26. Jonas Schluter and Kevin R. Foster (2012). The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol 2012 Nov; 10(11): e1001424.
  27. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533. CrossRefGoogle Scholar
  28. Tripathi SV, Gustafson CJ, Huang KE, Feldman SR (2013) Side effects of common acne treatments. Expert Opin Drug Saf 12:39–51. CrossRefGoogle Scholar
  29. Walther-António MR, Chen J, Multinu F, Hokenstad A, Distad TJ, Cheek EH, Keeney GL, Creedon DJ, Nelson H, Mariani A, Chia N (2016) Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med 8(122).
  30. Zeng Y, De Guardia A, Ziebal C, De Macedo FJ, Dabert P (2012) Nitrification and microbiological evolution during aerobic treatment of municipal solid wastes. Bioresour Technol 110:144–152. CrossRefGoogle Scholar
  31. Zouboulis CC (2009) Propionibacterium acnes and sebaceous lipogenesis: a love–hate relationship? J Invest Dermatol 129:2093–2096. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Collection of Industrial Microorganisms (NCIM)CSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations