Advertisement

IGF2-AS affects the prognosis and metastasis of gastric adenocarcinoma via acting as a ceRNA of miR-503 to regulate SHOX2

  • Ju Huang
  • You-xiang Chen
  • Bo ZhangEmail author
Original Article
  • 4 Downloads

Abstract

Disorder of long non-coding RNAs (LncRNAs) is found in various types of cancers and demonstrated to be associated with tumor occurrence and development. Our study found that lncRNA insulin growth factor 2 antisense (IGF2-AS) is up-regulated in gastric adenocarcinoma (GAC) tissues and correlated with poor prognosis in patients with GAC. Cell counting kit-8 (CCK8), colony formation, wound healing and transwell assays revealed that knockdown of IGF2-AS in BGC823 and SGC7901 cells significantly suppressed cell proliferation, migration and invasion. While, overexpression of IGF2-AS in AGS and MGC803 cells exhibited the opposite effects. RNA-FISH and subcellular fractionation assay found that most IGF2-AS was distributed in the cytoplasm, suggesting that IGF2-AS functioned as a potential ceRNA. RNA binding protein immunoprecipitation (RIP) assays further confirmed this assumption. By informatics prediction and luciferase reporter assay, we found that IGF2-AS functioned as an efficient miR-503 sponge and the level of miR-503 showed an inverse correlation with IGF2-AS. Short stature homeobox 2 (SHOX2) is predicted and verified as a target of miR-503. Moreover, IGF2-AS expression exhibited a negative correlation with miR-503 and a positive correlation with IGF2-AS. Subsequent rescue assay revealed that down-regulation of miR-503 or restoration of SHOX2 canceled IGF2-AS depletion-induced depression in proliferation and motility of BGC823 and SGC7901 cells. Meanwhile, up-regulation of miR-503 or down-regulation of SHOX2 decreased IGF2-AS overexpression induced promotion in proliferation and motility of AGS and MGC803 cells. In vivo tumorigenicity assay showed that knockdown of IGF2-AS significantly reduced tumor volume. Taken together, our results demonstrated that IGF2-AS takes important regulatory parts in GAC development by functioning as a ceRNA to regulate SHOX2 via sponging miR-503.

Keywords

IGF2-AS ceRNA miR-503 SHOX2 Gastric adenocarcinoma 

Notes

Compliance with ethical standards

Ethics approval

Our study was approved by the ethics committee of the Affiliated Yantai Yuhuangding Hospital of Qingdao University.

Consent to participate

Informed consent was signed by all patients.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefGoogle Scholar
  2. 2.
    Network CGA. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.CrossRefGoogle Scholar
  3. 3.
    Du C, Li D, Li N, Chen L, Li S, Yang Y, Hou M, Xie M, Zheng Z. DDX5 promotes gastric cancer cell proliferation in vitro and in vivo through mTOR signaling pathway. Sci Rep. 2017;7:42876.CrossRefGoogle Scholar
  4. 4.
    Katoh H, Ishikawa S. Genomic pathobiology of gastric carcinoma. Pathol Int. 2017;67(2):63.CrossRefGoogle Scholar
  5. 5.
    Li H, Ma SQ, Huang J, Chen XP, Zhou HH. Roles of long noncoding RNAs in colorectal cancer metastasis. Oncotarget. 2017;8(24):39859–76.Google Scholar
  6. 6.
    Wang P, Li J, Zhao W, Shang C, Jiang X, Wang Y, Zhou B, Bao F, Qiao H (2018) A novel LncRNA-miRNA-mRNA triple network identifies LncRNA RP11-363E7.4 as an important regulator of miRNA and gene expression in gastric cancer. Cell Physiol Biochem. 47(3):1025.CrossRefGoogle Scholar
  7. 7.
    Lei K, Liang X, Gao Y, Xu B, Xu Y, Li Y, Tao Y, Shi W, Liu J. Lnc-ATB contributes to gastric cancer growth through a MiR-141-3p/TGFβ2 feedback loop. Biochem Biophys Res Commun. 2017;484(3):514–21.CrossRefGoogle Scholar
  8. 8.
    Zhen L, Yun-hui L, Hong-yu D, Jun M, Yi-long Y. Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol. 2016;37(1):673.CrossRefGoogle Scholar
  9. 9.
    Xu TP, Huang MD, Xia R, Liu XX, Sun M, Yin L, Chen WM, Han L, Zhang EB, Kong R. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J Hematol Oncol. 2014;7(1):63.CrossRefGoogle Scholar
  10. 10.
    Li H, Yu B, Li J, Su L, Yan M, Zhu Z, Liu B. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5(8):2318–29.CrossRefGoogle Scholar
  11. 11.
    Hu Y, Wang J, Qian J, Kong X, Tang J, Wang Y, Chen H, Hong J, Zou W, Chen Y, Xu J. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Can Res. 2014;74(23):6890–902.CrossRefGoogle Scholar
  12. 12.
    Gu Y, Chen T, Li G, Yu X, Lu Y, Wang H, Teng L. LncRNAs: emerging biomarkers in gastric cancer. Future Oncol (London, England). 2015;11(17):2427–41.CrossRefGoogle Scholar
  13. 13.
    Okutsu T, Kuroiwa Y, Kagitani F, Kai M, Aisaka K, Tsutsumi O, Kaneko Y, Yokomori K, Surani MA, Kohda T. Expression and imprinting status of human PEG8/IGF2AS, a paternally expressed antisense transcript from the IGF2 locus Wilms’ tumors. J Biochem. 2000;127(3):475–83.CrossRefGoogle Scholar
  14. 14.
    Song C, Song C, Chen K, Zhang X. Inhibition of long non-coding RNA IGF2AS protects apoptosis and neuronal loss in anesthetic-damaged mouse neural stem cell derived neurons. Biomed Pharmacother. 2017;85:218–24.CrossRefGoogle Scholar
  15. 15.
    Zhao Z, Liu B, Li B, Song C, Diao H, Guo Z, Li Z, Zhang J. Inhibition of long noncoding RNA IGF2AS promotes angiogenesis in type 2 diabetes. Biomed Pharmacother. 2017;92:445–50.CrossRefGoogle Scholar
  16. 16.
    Chen Q, Sun T, Wang F, Gong B, Xie W, Ma M, Yang X. Long noncoding RNA IGF2AS is acting as an epigenetic tumor suppressor in human prostate cancer. Urology. 2019;124:310.e1–e8.CrossRefGoogle Scholar
  17. 17.
    Zhang X, Zhang X, Hu R, Hao L. Prognostic implication and functional role of long noncoding RNA IGF2AS in human non-small cell lung cancer. J Cell Biochem. 2019;120:12067.CrossRefGoogle Scholar
  18. 18.
    Bao H, Guo CG, Qiu PC, Zhang XL, Dong Q, Wang YK. Long non-coding RNA Igf2as controls hepatocellular carcinoma progression through the ERK/MAPK signaling pathway. Oncol Lett. 2017;14(3):2831–7.CrossRefGoogle Scholar
  19. 19.
    Wu D, Cao G, Huang Z, Jin K, Hu H, Yu J, Zeng Y. Decreased miR-503 expression in gastric cancer is inversely correlated with serum carcinoembryonic antigen and acts as a potential prognostic and diagnostic biomarker. Oncotargets Ther. 2017;10:129–35.CrossRefGoogle Scholar
  20. 20.
    Wang Y, Cao Z, Wang L, Liu S, Cai J. Downregulation of microRNA‑142‑3p and its tumor suppressor role in gastric cancer. Oncol Lett. 2018;15(5):8172–80.Google Scholar
  21. 21.
    Yi J, Jin L, Chen J, Feng B, He Z, Chen L, Song H. MiR-375 suppresses invasion and metastasis by direct targeting of SHOX2 in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin. 2017;49(2):159–69.Google Scholar
  22. 22.
    Yang T, Zhang H, Cai SY, Shen YN, Yuan SX, Yang GS, Wu MC, Lu JH, Shen F. Elevated SHOX2 expression is associated with tumor recurrence of hepatocellular carcinoma. Ann Surg Oncol. 2013;20(3):S644–49.CrossRefGoogle Scholar
  23. 23.
    Hong S, Noh H, Teng Y, Shao J, Rehmani H, Ding HF, Dong Z, Su SB, Shi H, Kim J. SHOX2 is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells. Neoplasia. 2014;16(4):279–90.CrossRefGoogle Scholar
  24. 24.
    Schmidt B, Liebenberg V, Dietrich D, Schlegel T, Kneip C, Seegebarth A, Flemming N, Seemann S, Distler J, Lewin J. SHOX2 DNA Methylation is a Biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer. 2010;10(1):600.CrossRefGoogle Scholar
  25. 25.
    Dietrich D, Hasinger O, Liebenberg V, Field JK, Kristiansen G, Soltermann A. DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagn Mol Pathol. 2012;21(2):93.CrossRefGoogle Scholar
  26. 26.
    Tony G, Sven D. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19.CrossRefGoogle Scholar
  27. 27.
    Fu Z, Chen C, Zhou Q, Wang Y, Zhao Y, Zhao X, Li W, Zheng S, Ye H, Wang L, He Z. LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9. Cancer Lett. 2017;410:68.CrossRefGoogle Scholar
  28. 28.
    Chao Y, Di W, Lin G, Xi L, Jin Y, Dong W, Wang T, Li X. Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives. Oncotarget. 2016;7(12):13479–90.Google Scholar
  29. 29.
    Wu D, Cao G, Huang Z, Jin K, Hu H, Yu J, Zeng Y. Decreased miR-503 expression in gastric cancer is inversely correlated with serum carcinoembryonic antigen and acts as a potential prognostic and diagnostic biomarker. OncoTargets Ther. 2017;10:129–35.CrossRefGoogle Scholar
  30. 30.
    Peng Y, Liu YM, Li LC, Wang LL, Wu XL. microRNA-503 inhibits gastric cancer cell growth and epithelial-to-mesenchymal transition. Oncol Lett. 2014;7(4):1233–8.CrossRefGoogle Scholar
  31. 31.
    Hongbing L, Espinoza-Lewis RA, Chaohui C, Xuefeng H, Yanding Z, Yiping C. The role of Shox2 in SAN development and function. Pediatr Cardiol. 2012;33(6):882–9.CrossRefGoogle Scholar
  32. 32.
    Blaschke RJ, Hahurij ND, Sanne K, Steffen J, Wisse LJ, Kirsten D, Tina M, Konstantinos A, Jessica S, Hardt SE. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation. 2007;115(14):1830–8.CrossRefGoogle Scholar
  33. 33.
    Hongbing L, Chao-Hui C, Espinoza-Lewis RA, Zhen J, Ivana S, Xuefeng H, Minkui L, Yanding Z, Yiping C. Functional redundancy between human SHOX and mouse Shox2 genes in the regulation of sinoatrial node formation and pacemaking function. J Biol Chem. 2011;286(19):17029–38.CrossRefGoogle Scholar
  34. 34.
    Dimo D, Christoph K, Olaide R, Triantafillos L, Anke S, Thomas S, Nadja F, Sebastian R, Jürgen D, Michael F. Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int J Oncol. 2012;40(3):825–32.Google Scholar
  35. 35.
    Yulin X, Ming J, Jing Y, Changjiang Z, Yan Z, Xuemei K, Lin L, Xiaohong W. STAT3-regulated long non-coding RNAs lnc-7SK and lnc-IGF2-AS promote hepatitis C virus replication. Mol Med Rep. 2015;12(5):6738.CrossRefGoogle Scholar
  36. 36.
    Koseki T, Suehiro N, Masuda Y, Miyoshi N, Muraoka D, Ogo N, Asai A. Discovery of a new STAT3 inhibitor acting on the linker domain. Biol Pharm Bull. 2019;42(5):792–800.CrossRefGoogle Scholar
  37. 37.
    Koh JS, Joo MK, Park JJ, Yoo HS, Choi BI, Lee BJ, Chun HJ, Lee SW. Inhibition of STAT3 in gastric cancer: role of pantoprazole as SHP-1 inducer. Cell Biosci. 2018;8:50.CrossRefGoogle Scholar
  38. 38.
    Ji K, Zhang L, Zhang M, Chu Q, Li X, Wang W. Prognostic value and clinicopathological significance of p-stat3 among gastric carcinoma patients: a systematic review and meta-analysis. Medicine. 2016;95(5):e2641.CrossRefGoogle Scholar

Copyright information

© The International Gastric Cancer Association and The Japanese Gastric Cancer Association 2019

Authors and Affiliations

  1. 1.Queen Mary School of Nanchang UniversityNanchangChina
  2. 2.Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
  3. 3.Department of GastroenterologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina

Personalised recommendations