Advertisement

Gastric Cancer

, Volume 22, Issue 4, pp 653–662 | Cite as

The therapeutic potential of metformin in gastric cancer

  • Sarah CourtoisEmail author
  • Philippe Lehours
  • Emilie Bessède
Review Article

Abstract

Metformin is a biguanide molecule used since 1957 to treat type 2 diabetes patients. In addition to its hypoglycemic effects, epidemiological studies have shown that metformin can be associated with a decrease in cancer development risk in diabetic populations. Thus, since 2005 this molecule is largely studied for its antitumoural properties in different types of cancer. The potential antitumoural effect of metformin in gastric cancer has been poorly studied. Here, we detailed the different described mechanisms implicated in the antitumoural effect of metformin in gastric cancer, from the signalling pathways to the functional effects on gastric cancer cell lines and gastric cancer stem cells.

Keywords

Gastric adenocarcinoma EMT Tumour growth Cancer stem cells 

Notes

Acknowledgements

We thank Lornella Seeneevassen, Amandine Laur and Elvire Berthenet (INSERM U1053, University of Bordeaux, Bordeaux, France) for helpful discussions.

References

  1. 1.
    WHO. Cancer today [Internet]. 2012. http://gco.iarc.fr/today/home.
  2. 2.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefGoogle Scholar
  3. 3.
    Fock KM. Review article: the epidemiology and prevention of gastric cancer. Aliment Pharmacol Ther. 2014;40:250–60.CrossRefGoogle Scholar
  4. 4.
    Ajani JA, D’Amico TA, Almhanna K, Bentrem DJ, Chao J, Das P, et al. Gastric cancer, version 3.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw JNCCN. 2016;14:1286–312.CrossRefGoogle Scholar
  5. 5.
    Smyth EC, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D, et al. Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc Med Oncol. 2016;27:v38–49.CrossRefGoogle Scholar
  6. 6.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefGoogle Scholar
  7. 7.
    Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric cancer: classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012;3:251–61.Google Scholar
  8. 8.
    Bailey CJ. Metformin: historical overview. Diabetologia. 2017.Google Scholar
  9. 9.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.CrossRefGoogle Scholar
  10. 10.
    Ferrannini E. The target of metformin in type 2 diabetes. N Engl J Med. 2014;371:1547–8.CrossRefGoogle Scholar
  11. 11.
    El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275:223–8.CrossRefGoogle Scholar
  12. 12.
    Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–6.CrossRefGoogle Scholar
  13. 13.
    Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20:953–66.CrossRefGoogle Scholar
  14. 14.
    Foretz M, Hébrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120:2355–69.CrossRefGoogle Scholar
  15. 15.
    Gunton JE, Delhanty PJD, Takahashi S-I, Baxter RC. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab. 2003;88:1323–32.CrossRefGoogle Scholar
  16. 16.
    Ha J, Guan K-L, Kim J. AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med. 2015;46:46–62.CrossRefGoogle Scholar
  17. 17.
    Fischer Y, Thomas J, Rösen P, Kammermeier H. Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats. Endocrinology. 1995;136:412–20.CrossRefGoogle Scholar
  18. 18.
    Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res Phila Pa. 2010;3:1451–61.CrossRefGoogle Scholar
  19. 19.
    Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–5.CrossRefGoogle Scholar
  20. 20.
    Gandini S, Puntoni M, Heckman-Stoddard BM, Dunn BK, Ford L, DeCensi A, et al. Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders. Cancer Prev Res Phila Pa. 2014;7:867–85.CrossRefGoogle Scholar
  21. 21.
    Zhou X-L, Xue W-H, Ding X-F, Li L-F, Dou M-M, Zhang W-J, et al. Association between metformin and the risk of gastric cancer in patients with type 2 diabetes mellitus: a meta-analysis of cohort studies. Oncotarget. 2017;8:55622–31.Google Scholar
  22. 22.
    Lee C, Jung M, Jung I, Heo SJ, Jeong YH, An JY, et al. Cumulative metformin use and its impact on survival in gastric cancer patients after gastrectomy. Ann Surg. 2016;263:96–102.CrossRefGoogle Scholar
  23. 23.
    Dowling RJO, Niraula S, Stambolic V, Goodwin PJ. Metformin in cancer: translational challenges. J Mol Endocrinol. 2012;48:R31–43.CrossRefGoogle Scholar
  24. 24.
    Del Barco S, Vazquez-Martin A, Cufí S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J, et al. Metformin: multi-faceted protection against cancer. Oncotarget. 2011;2:896–917.Google Scholar
  25. 25.
    Martin-Castillo B, Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. Metformin and cancer: doses, mechanisms and the dandelion and hormetic phenomena. Cell Cycle Georget Tex. 2010;9:1057–64.CrossRefGoogle Scholar
  26. 26.
    Emami Riedmaier A, Fisel P, Nies AT, Schaeffeler E, Schwab M. Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci. 2013;34:126–35.CrossRefGoogle Scholar
  27. 27.
    Kato K, Gong J, Iwama H, Kitanaka A, Tani J, Miyoshi H, et al. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol Cancer Ther. 2012;11:549–60.CrossRefGoogle Scholar
  28. 28.
    Chia N-Y, Deng N, Das K, Huang D, Hu L, Zhu Y, et al. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut. 2015;64:707–19.CrossRefGoogle Scholar
  29. 29.
    Hong YH, Varanasi US, Yang W, Leff T. AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J Biol Chem. 2003;278:27495–501.CrossRefGoogle Scholar
  30. 30.
    Chang HR, Nam S, Kook M-C, Kim K-T, Liu X, Yao H, et al. HNF4α is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer. Gut. 2016;65:19–32.CrossRefGoogle Scholar
  31. 31.
    Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: an in-depth literature review. World J Exp Med. 2015;5:84–102.CrossRefGoogle Scholar
  32. 32.
    Li G, Su Q, Liu H, Wang D, Zhang W, Lu Z, et al. Frizzled7 promotes epithelial-to-mesenchymal transition and stemness via activating canonical Wnt/β-catenin pathway in gastric cancer. Int J Biol Sci. 2018;14:280–93.CrossRefGoogle Scholar
  33. 33.
    Valaee S, Yaghoobi MM, Shamsara M. Metformin inhibits gastric cancer cells metastatic traits through suppression of epithelial–mesenchymal transition in a glucose-independent manner. PloS One. 2017;12:e0174486.CrossRefGoogle Scholar
  34. 34.
    Jun K-H, Lee JE, Kim SH, Jung J-H, Choi H-J, Kim YI, et al. Clinicopathological significance of N-cadherin and VEGF in advanced gastric cancer brain metastasis and the effects of metformin in preclinical models. Oncol Rep. 2015;34:2047–53.CrossRefGoogle Scholar
  35. 35.
    Li P, Tong L, Song Y, Sun J, Shi J, Wu Z, et al. Long noncoding RNA H19 participates in metformin-mediated inhibition of gastric cancer cell invasion. J Cell Physiol. 2019;234:4515–4527.CrossRefGoogle Scholar
  36. 36.
    Huang D, He X, Zou J, Guo P, Jiang S, Lv N, et al. Negative regulation of Bmi-1 by AMPK and implication in cancer progression. Oncotarget. 2016;7:6188–200.Google Scholar
  37. 37.
    Song Z, Yue W, Wei B, Wang N, Li T, Guan L, et al. Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PloS One. 2011;6:e17687.CrossRefGoogle Scholar
  38. 38.
    Song Z, Wei B, Lu C, Huang X, Li P, Chen L. Metformin suppresses the expression of Sonic hedgehog in gastric cancer cells. Mol Med Rep. 2017;15:1909–15.CrossRefGoogle Scholar
  39. 39.
    Han G, Gong H, Wang Y, Guo S, Liu K. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell. Cancer Biol Ther. 2015;16:77–87.CrossRefGoogle Scholar
  40. 40.
    Ryan BM, O’Donovan N, Duffy MJ. Survivin: a new target for anti-cancer therapy. Cancer Treat Rev. 2009;35:553–62.CrossRefGoogle Scholar
  41. 41.
    Jaiswal PK, Goel A, Mittal RD. Survivin. A molecular biomarker in cancer. Indian J Med Res. 2015;141:389–97.CrossRefGoogle Scholar
  42. 42.
    Liu JL, Gao W, Kang QM, Zhang XJ, Yang SG. Prognostic value of survivin in patients with gastric cancer: a systematic review with meta-analysis. PloS One. 2013;8:e71930.CrossRefGoogle Scholar
  43. 43.
    Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76.CrossRefGoogle Scholar
  44. 44.
    Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122:3589–94.CrossRefGoogle Scholar
  45. 45.
    Yu G, Fang W, Xia T, Chen Y, Gao Y, Jiao X, et al. Metformin potentiates rapamycin and cisplatin in gastric cancer in mice. Oncotarget. 2015;6:12748–62.Google Scholar
  46. 46.
    Villar VH, Nguyen TL, Terés S, Bodineau C, Durán RV. Escaping mTOR inhibition for cancer therapy: tumor suppressor functions of mTOR. Mol Cell Oncol. 2017;4:e1297284.CrossRefGoogle Scholar
  47. 47.
    Chen G, Feng W, Zhang S, Bian K, Yang Y, Fang C, et al. Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling. Am J Cancer Res. 2015;5:1423–34.Google Scholar
  48. 48.
    Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69:7507–11.CrossRefGoogle Scholar
  49. 49.
    Shank JJ, Yang K, Ghannam J, Cabrera L, Johnston CJ, Reynolds RK, et al. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol. 2012;127:390–7.CrossRefGoogle Scholar
  50. 50.
    Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res Phila Pa. 2012;5:355–64.CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Guan M, Zheng Z, Zhang Q, Gao F, Xue Y. Effects of metformin on CD133+ colorectal cancer cells in diabetic patients. PloS One. 2013;8:e81264.CrossRefGoogle Scholar
  52. 52.
    Courtois S, Durán RV, Giraud J, Sifré E, Izotte J, Mégraud F, et al. Metformin targets gastric cancer stem cells. Eur J Cancer. 2017;84:193–201.CrossRefGoogle Scholar
  53. 53.
    Sekino N, Kano M, Matsumoto Y, Sakata H, Murakami K, Toyozumi T, et al. The antitumor effects of metformin on gastric cancer in vitro and on peritoneal metastasis. Anticancer Res. 2018;38:6263–9.CrossRefGoogle Scholar
  54. 54.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRefGoogle Scholar
  55. 55.
    Chen G, Yu C, Tang Z, Liu S, An F, Zhu J, et al. Metformin suppresses gastric cancer progression through calmodulin-like protein 3 secreted from tumor-associated fibroblasts. Oncol Rep. 2018.Google Scholar
  56. 56.
    Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci USA. 2015;112:1809–14.CrossRefGoogle Scholar
  57. 57.
    Courtois S, Bénéjat L, Izotte J, Mégraud F, Varon C, Lehours P, et al. Metformin can inhibit Helicobacter pylori growth. Future Microbiol. 2018;13:1575–1583.CrossRefGoogle Scholar
  58. 58.
    Tseng C-H. Metformin reduces gastric cancer risk in patients with type 2 diabetes mellitus. Aging. 2016;8:1636–49.CrossRefGoogle Scholar
  59. 59.
    Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23:850–8.CrossRefGoogle Scholar
  60. 60.
    Garrett WS. Cancer and the microbiota. Science. 2015;348:80–6.CrossRefGoogle Scholar
  61. 61.
    Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.CrossRefGoogle Scholar
  62. 62.
    Lesan V, Ghaffari SH, Salaramoli J, Heidari M, Rostami M, Alimoghaddam K, et al. Evaluation of antagonistic effects of metformin with cisplatin in gastric cancer cells. Int J Hematol Oncol Stem Cell Res. 2014;8:12–9.Google Scholar
  63. 63.
    Wu X. Effect of metformin combined with chemotherapeutic agents on gastric cancer cell line AGS. Pak J Pharm Sci. 2017;30:1833–6.Google Scholar
  64. 64.
    Fujita H, Hirose K, Sato M, Fujioka I, Fujita T, Aoki M, et al. Metformin attenuates hypoxia-induced resistance to cisplatin in the HepG2 cell line. Oncol Lett. 2019;17:2431–40.Google Scholar
  65. 65.
    Zhang H-H, Guo X-L. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 2016;78:13–26.CrossRefGoogle Scholar

Copyright information

© The International Gastric Cancer Association and The Japanese Gastric Cancer Association 2019

Authors and Affiliations

  1. 1.INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOnBordeauxFrance
  2. 2.French National Reference Center for Campylobacters and Helicobacters in Bordeaux (CNRCH)University Hospital of BordeauxBordeauxFrance

Personalised recommendations