Advertisement

Gastric Cancer

, Volume 22, Issue 1, pp 23–36 | Cite as

Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination

  • Hadi Maleki Kakelar
  • Abolfazl Barzegari
  • Jaber Dehghani
  • Shahram Hanifian
  • Nazli Saeedi
  • Jaleh Barar
  • Yadollah OmidiEmail author
Review Article

Abstract

Helicobacter pylori affect around 50% of the population worldwide. More importantly, the gastric infection induced by this bacterium is deemed to be associated with the progression of distal gastric carcinoma and gastric mucosal lymphoma in the human. H. pylori infection and its prevalent genotype significantly differ across various geographical regions. Based on numerous virulence factors, H. pylori can target different cellular proteins to modulate the variety of inflammatory responses and initiate numerous “hits” on the gastric mucosa. Such reactions lead to serious complications, including gastritis and peptic ulceration, gastric cancer and gastric mucosa-associated lymphoid structure lymphoma. Therefore, H. pylori have been considered as the type I carcinogen by the Global Firm for Research on Cancer. During the two past decades, different reports revealed that H. pylori possess oncogenic potentials in the gastric mucosa through a complicated interplay between the bacterial factors, various facets, and the environmental factors. Accordingly, numerous signaling pathways could be triggered in the development of gastrointestinal diseases (e.g., gastric cancer). Therefore, the main strategy for the treatment of gastric cancer is controlling the disease far before its onset using preventive/curative vaccination. Increasing the efficiency of vaccines may be achieved by new trials of vaccine modalities, which is used to optimize the cellular immunity. Taken all, H. pylori infection may impose severe complications, for resolving of which extensive researches are essential in terms of immune responses to H. pylori. We envision that H. pylori-mediated diseases can be controlled by advanced vaccines and immunotherapies.

Keywords

Helicobacter pylori Virulence factors Gastric cancer Host factors Molecular mechanisms Vaccination 

Notes

Acknowledgements

This study was financially supported by the Research Center for Pharmaceutical Nanotechnology (RCPN) at Tabriz University of Medical Sciences (Grant #: RCPN-94010). This project is part of Ph.D. thesis (No. 94/010/156/3) conducted at RCPN.

Compliance with ethical standards

Ethical approval

There is none to be declared.

Conflict of interest

The authors declare no competing interests.

References

  1. 1.
    Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P, et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature. 2007;445(7130):915–8.Google Scholar
  2. 2.
    Marshall B, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;323(8390):1311–5.Google Scholar
  3. 3.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.Google Scholar
  4. 4.
    Venneman K, Huybrechts I, Gunter MJ, Vandendaele L, Herrero R, Van Herck K. The epidemiology of Helicobacter pylori infection in Europe and the impact of lifestyle on its natural evolution toward stomach cancer after infection: a systematic review. Helicobacteria. 2018;23:e12483.Google Scholar
  5. 5.
    Quiros RM, Bui CL. Multidisciplinary approach to esophageal and gastric cancer. Surg Clin N Am. 2009;89(1):79–96.Google Scholar
  6. 6.
    Du M, Atherton J. Molecular subtyping of gastric MALT lymphomas: implications for prognosis and management. Gut. 2006;55(6):886–93.Google Scholar
  7. 7.
    Oh S, Kim N, Oh DH, Bang S-M, Choi YJ, Lee JY, et al. Concurrent gastric and pulmonary mucosa-associated lymphoid tissue lymphomas with pre-existing intrinsic chronic inflammation: a case report and a review of the literature. Gut Liver. 2015;9(3):424.Google Scholar
  8. 8.
    Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–44.Google Scholar
  9. 9.
    Noto JM, Peek RM Jr. Helicobacter pylori: an overview, Helicobacter species. Berlin: Springer; 2012. pp. 7–10.Google Scholar
  10. 10.
    Kamangar F, Dawsey SM, Blaser MJ, Perez-Perez GI, Pietinen P, Newschaffer CJ, et al. Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Helicobacter pylori seropositivity. J Natl Cancer Inst. 2006;98(20):1445–52.Google Scholar
  11. 11.
    Kamada T, Kurose H, Yamanaka Y, Manabe N, Kusunoki H, Shiotani A, et al. Relationship between gastroesophageal junction adenocarcinoma and Helicobacter pylori infection in Japan. Digestion. 2012;85(4):256–60.Google Scholar
  12. 12.
    Hill P, Rode J. Helicobacter pylori in ectopic gastric mucosa in Meckel’s diverticulum. Pathology. 1998;30(1):7–9.Google Scholar
  13. 13.
    Dubois A, Borén T. Helicobacter pylori is invasive and it may be a facultative intracellular organism. Cell Microbiol. 2007;9(5):1108–16.Google Scholar
  14. 14.
    Amieva MR, El–Omar EM. Host-Bacterial Interactions in Helicobacter pylori Infection. Gastroenterology. 2008;134(1):306–23.Google Scholar
  15. 15.
    Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, Vollmer W, et al. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell. 2010;141(5):822–33.Google Scholar
  16. 16.
    Falush D. Traces of human migrations in Helicobacter pylori populations. Science. 2003;299:1582–5.Google Scholar
  17. 17.
    Tomb J-F, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997;388(6642):539–47.Google Scholar
  18. 18.
    McClain MS, Shaffer CL, Israel DA, Peek RM, Cover TL. Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer. BMC Genom. 2009;10(1):3.Google Scholar
  19. 19.
    Thiberge J-M, Boursaux-Eude C, Lehours P, Dillies M-A, Creno S, Coppée J-Y, et al. From array-based hybridization of Helicobacter pylori isolates to the complete genome sequence of an isolate associated with MALT lymphoma. BMC Genom. 2010;11(1):368.Google Scholar
  20. 20.
    Alm RA, Ling L-SL, Moir DT, King BL, Brown ED, Doig PC, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 1999;397(6715):176–80.Google Scholar
  21. 21.
    Baltrus DA, Amieva MR, Covacci A, Lowe TM, Merrell DS, Ottemann KM, et al. The complete genome sequence of Helicobacter pylori strain G27. J Bacteriol. 2009;191(1):447–8.Google Scholar
  22. 22.
    Oh JD, Kling-Bäckhed H, Giannakis M, Xu J, Fulton RS, Fulton LA, et al. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci USA. 2006;103(26):9999–10004.Google Scholar
  23. 23.
    Israel DA, Salama N, Krishna U, Rieger UM, Atherton JC, Falkow S, et al. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc Natl Acad Sci USA. 2001;98(25):14625–30.Google Scholar
  24. 24.
    Fahimi F, Tohidkia MR, Fouladi M, Aghabeygi R, Samadi N, Omidi Y. Pleiotropic cytotoxicity of VacA toxin in host cells and its impact on immunotherapy. Bioimpacts. 2017;7(1):59–71.  https://doi.org/10.15171/bi.2017.08.Google Scholar
  25. 25.
    Higashi H, Yokoyama K, Fujii Y, Ren S, Yuasa H, Saadat I, et al. EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem. 2005;280(24):23130–7.Google Scholar
  26. 26.
    Cover TL, Blaser M. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem. 1992;267(15):10570–5.Google Scholar
  27. 27.
    Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, et al. Clinical Relevance of Helicobacter pylori cagA and vacA Gene Polymorphisms. Gastroenterology. 2008;135(1):91–9.Google Scholar
  28. 28.
    Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiß S, Sittka A, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010;464(7286):250–5.Google Scholar
  29. 29.
    Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014;345(2):196–202.Google Scholar
  30. 30.
    Müller A. Multistep activation of the Helicobacter pylori effector CagA. J Clin Invest. 2012;122(4):1192.Google Scholar
  31. 31.
    Jiménez-Soto LF, Kutter S, Sewald X, Ertl C, Weiss E, Kapp U, et al. Helicobacter pylori type IV secretion apparatus exploits β1 integrin in a novel RGD-independent manner. PLoS Pathog. 2009;5(12):e1000684.Google Scholar
  32. 32.
    Mueller D, Tegtmeyer N, Brandt S, Yamaoka Y, De Poire E, Sgouras D, et al. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J Clin Invest. 2012;122(4):1553.Google Scholar
  33. 33.
    Xu X, Liu Z, Fang M, Yu H, Liang X, Li X, et al. Helicobacter pylori CagA induces ornithine decarboxylase upregulation via Src/MEK/ERK/c-Myc pathway: implication for progression of gastric diseases. Exp Biol Med. 2012;237(4):435–41.Google Scholar
  34. 34.
    Amin A, Qadri RA, Lone G. Progression and metastasis of lung cancer-a study of predominant cellular interactions in tumor microenvironment. PhD Dissertation. 2016.Google Scholar
  35. 35.
    Boquet P, Ricci V. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol. 2012;20(4):165–74.Google Scholar
  36. 36.
    Rassow J, Meinecke M. Helicobacter pylori VacA: a new perspective on an invasive chloride channel. Microbes Infect. 2012;14(12):1026–33.Google Scholar
  37. 37.
    Jain P, Luo Z-Q, Blanke SR. Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death. Proc Natl Acad Sci. 2011;108(38):16032–7.Google Scholar
  38. 38.
    Palframan SL, Kwok T, Gabriel K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front Cell Infect Microbiol. 2012;2:92.Google Scholar
  39. 39.
    Raju D, Hussey S, Ang M, Terebiznik MR, Sibony M, Galindo–Mata E, et al. Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology. 2012;142(5):1160–71.Google Scholar
  40. 40.
    Lamb A, Chen LF. Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. J Cell Biochem. 2013;114(3):491–7.Google Scholar
  41. 41.
    Hoffmann W. Stem cells, self-renewal and cancer of the gastric epithelium. Curr Med Chem. 2012;19(35):5975–83.Google Scholar
  42. 42.
    Yasui W, Sentani K, Sakamoto N, Anami K, Naito Y, Oue N. Molecular pathology of gastric cancer: research and practice. Pathol Res Pract. 2011;207(10):608–12.Google Scholar
  43. 43.
    Xu G, Shen J, Yang XO, Sasahara M, Su X. Cancer stem cells: the ‘heartbeat’of gastric cancer. J Gastroenterol. 2013;48(7):781–97.Google Scholar
  44. 44.
    Ferrand J, Lehours P, Schmid-Alliana A, Mégraud F, Varon C. Helicobacter pylori infection of gastrointestinal epithelial cells in vitro induces mesenchymal stem cell migration through an NF-κB-dependent pathway. PLoS One. 2011;6(12):e29007.Google Scholar
  45. 45.
    Varon C, Dubus P, Mazurier F, Asencio C, Chambonnier L, Ferrand J, et al. Helicobacter pylori infection recruits bone marrow derived cells that participate in gastric preneoplasia in mice. Gastroenterology. 2012;142(2):281–91.Google Scholar
  46. 46.
    Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71.Google Scholar
  47. 47.
    Preston-Martin S, Pike MC, Ross RK, Jones PA, Henderson BE. Increased cell division as a cause of human cancer. Cancer Res. 1990;50(23):7415–21.Google Scholar
  48. 48.
    Moss SF, Blaser MJ. Mechanisms of disease: inflammation and the origins of cancer. Nat Clin Pract Oncol. 2005;2(2):90–7.Google Scholar
  49. 49.
    Anderson KM, Czinn SJ, Redline RW, Blanchard TG. Induction of CTLA-4-mediated anergy contributes to persistent colonization in the murine model of gastric Helicobacter pylori infection. J Immunol. 2006;176(9):5306–13.Google Scholar
  50. 50.
    Polk DB, Peek RM Jr. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer. 2010;10(6):403.Google Scholar
  51. 51.
    Wei J, O’Brien D, Vilgelm A, Piazuelo MB, Correa P, Washington MK, et al. Interaction of Helicobacter pylori with gastric epithelial cells is mediated by the p53 protein family. Gastroenterology. 2008;134(5):1412–23.Google Scholar
  52. 52.
    Shin CM, Kim N, Jung Y, Park JH, Kang GH, Kim JS, et al. Role of Helicobacter pylori infection in aberrant DNA methylation along multistep gastric carcinogenesis. Cancer Sci. 2010;101(6):1337–46.Google Scholar
  53. 53.
    Hamilton JP, Meltzer SJ. A review of the genomics of gastric cancer. Clin Gastroenterol Hepatol. 2006;4(4):416–25.Google Scholar
  54. 54.
    Chan A, Peng J, Lam S, Lai K, Yuen M, Cheung H, et al. Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut. 2006;55(4):463–8.Google Scholar
  55. 55.
    Sepulveda AR, Yao Y, Yan W, Park DI, Kim JJ, Gooding W, et al. CpG methylation and reduced expression of O(6) methylguanine DNA methyltransferase is associated with Helicobacter pylori infection. Gastroenterology. 2010;138(5):1836–44.Google Scholar
  56. 56.
    Belair C, Darfeuille F, Staedel C. Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect. 2009;15(9):806–12.Google Scholar
  57. 57.
    Matsushima K, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, et al. MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer. 2011;128(2):361–70.Google Scholar
  58. 58.
    Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88(12):1358–66.Google Scholar
  59. 59.
    Xiao B, Liu Z, Li B-S, Tang B, Li W, Guo G, et al. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis. 2009;200(6):916–25.Google Scholar
  60. 60.
    Fehri LF, Koch M, Belogolova E, Khalil H, Bolz C, Kalali B, et al. Helicobacter pylori induces miR-155 in T cells in a cAMP-Foxp3-dependent manner. PLoS One. 2010;5(3):e9500.Google Scholar
  61. 61.
    Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M. A model for gastric cancer epidemiology. Lancet. 1975;306(7924):58–60.Google Scholar
  62. 62.
    Sanduleanu S, Jonkers D, De Bruine A, Hameeteman W, Stockbrügger R. Changes in gastric mucosa and luminal environment during acid-suppressive therapy: a review in depth. Dig Liver Dis. 2001;33(8):707–19.Google Scholar
  63. 63.
    Hansson L-E, Nyrén O, Hsing AW, Bergström R, Josefsson S, Chow W-H, et al. The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N Engl J Med. 1996;335(4):242–9.Google Scholar
  64. 64.
    Calam J. The somatostatin-gastrin link of Helicobacter pylori infection. Ann Med. 1995;27(5):569–73.Google Scholar
  65. 65.
    Hahm KB, Lee KM, Kim YB, Hong WS, Lee WH, Han SU, et al. Conditional loss of TGF-β signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther. 2002;16:115–27.  https://doi.org/10.1046/j.1365-2036.16.s2.3.x.Google Scholar
  66. 66.
    Wei J, Nagy TA, Vilgelm A, Zaika E, Ogden SR, Romero-Gallo J, et al. Regulation of p53 tumor suppressor by Helicobacter pylori in gastric epithelial cells. Gastroenterology. 2010;139(4):1333–43. e4.Google Scholar
  67. 67.
    Handa O, Naito Y, Yoshikawa T. Redox biology and gastric carcinogenesis: the role of Helicobacter pylori. Redox Rep. 2011;16(1):1–7.Google Scholar
  68. 68.
    Tsugawa H, Suzuki H, Saya H, Hatakeyama M, Hirayama T, Hirata K, et al. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microb. 2012;12(6):764–77.Google Scholar
  69. 69.
    Mattsson A, Lönroth H, Quiding-Järbrink M, Svennerholm A-M. Induction of B cell responses in the stomach of Helicobacter pylori-infected subjects after oral cholera vaccination. J Clin Invest. 1998;102(1):51.Google Scholar
  70. 70.
    Pappo J, Thomas W, Kabok Z, Taylor N, Murphy J, Fox J. Effect of oral immunization with recombinant urease on murine Helicobacter felis gastritis. Infect Immun. 1995;63(4):1246–52.Google Scholar
  71. 71.
    Ilver D, Arnqvist A, Ögren J, Frick I-M, Kersulyte D, Incecik ET, et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science. 1998;279(5349):373–7.Google Scholar
  72. 72.
    Su B, Hellström PM, Rubio C, Çelik J, Granström M, Normark S. Type I Helicobacter pylori shows Lewisb-independent adherence to gastric cells requiring de novo protein synthesis in both host and bacteria. J Infect Dis. 1998;178(5):1379–90.Google Scholar
  73. 73.
    Su B, Johansson S, Fällman M, Patarroyo M, Granström M, Normark S. Signal transduction-mediated adherence and entry of Helicobacter pylori into cultured cells. Gastroenterology. 1999;117(3):595–604.Google Scholar
  74. 74.
    Syder AJ, Guruge JL, Li Q, Hu Y, Oleksiewicz CM, Lorenz RG, et al. Helicobacter pylori attaches to NeuAcα2, 3Galβ1, 4 glycoconjugates produced in the stomach of transgenic mice lacking parietal cells. Mol Cell. 1999;3(3):263–74.Google Scholar
  75. 75.
    Odenbreit S, Püls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 2000;287(5457):1497–500.Google Scholar
  76. 76.
    Segal ED, Falkow S, Tompkins L. Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A. 1996;93(3):1259–64.Google Scholar
  77. 77.
    Segal ED, Lange C, Covacci A, Tompkins L, Falkow S. Induction of host signal transduction pathways by Helicobacter pylori. Proc Natl Acad Sci USA. 1997;94(14):7595–9.Google Scholar
  78. 78.
    Keates S, Hitti YS, Upton M, Kelly CP. Helicobacter pylori infection activates NF-kappa B in gastric epithelial cells. Gastroenterology. 1997;113(4):1099–109.Google Scholar
  79. 79.
    Ibraghimov A, Pappo J. The immune response against Helicobacter pylor—a direct linkage to the development of gastroduodenal disease. Microb Infect. 2000;2(9):1073–7.Google Scholar
  80. 80.
    Crowe SE, Alvarez L, Dytoc M, Hunt RH, Muller M, Sherman P, et al. Expression of interleukin 8 and CD54 by human gastric epithelium after Helicobacter pylori infection in vitro. Gastroenterology. 1995;108(1):65–74.Google Scholar
  81. 81.
    Hansen PS, Go MF, Varming K, Andersen LP, Genta RM, Graham DY, et al. Proinflammatory activation of neutrophils and monocytes by Helicobacter pylori in patients with different clinical presentations. Infect Immun. 1999;67(6):3171–4.Google Scholar
  82. 82.
    Hatz RA, Rieder G, Stolte M, Bayerdorffer E, Meimarakis G, Schildberg F, et al. Pattern of adhesion molecule expression on vascular endothelium in Helicobacter pylori-associated antral gastritis. Gastroenterology. 1997;112(6):1908–19.Google Scholar
  83. 83.
    Ye G, Barrera C, Fan X, Gourley WK, Crowe SE, Ernst PB, et al. Expression of B7-1 and B7-2 costimulatory molecules by human gastric epithelial cells: potential role in CD4 + T cell activation during Helicobacter pylori infection. J Clin Invest. 1997;99(7):1628.Google Scholar
  84. 84.
    Engstrand L, Scheynius A, Påhlson C, Grimelius L, Schwan A, Gustavsson S. Association of Campylobacter pylori with induced expression of class II transplantation antigens on gastric epithelial cells. Infect Immun. 1989;57(3):827–32.Google Scholar
  85. 85.
    Wee A, Teh M, Kang J. Association of Helicobacter pylori with HLA-DR antigen expression in gastritis. J Clin Pathol. 1992;45(1):30–3.Google Scholar
  86. 86.
    Fan X, Crowe SE, Behar S, Gunasena H, Ye G, Haeberle H, et al. The effect of class II major histocompatibility complex expression on adherence of Helicobacter pylori and induction of apoptosis in gastric epithelial cells: a mechanism for T helper cell type 1-mediated damage. J Exp Med. 1998;187(10):1659–69.Google Scholar
  87. 87.
    Blaser MJ. Ecology of Helicobacter pylori in the human stomach. J Clin Invest. 1997;100(4):759.Google Scholar
  88. 88.
    Knipp U, Birkholz S, Kaup W, Opferkuch W. Partial characterization of a cell proliferation-inhibiting protein produced by Helicobacter pylori. Infect Immun. 1996;64(9):3491–6.Google Scholar
  89. 89.
    Luzza F, Parrello T, Monteleone G, Sebkova L, Imeneo M, Vecchia A, et al. Changes in the mucosal expression of interleukin 15 in Helicobacter pylori-associated gastritis. FEMS Immunol Med Microbiol. 1999;24(2):233–8.Google Scholar
  90. 90.
    Molinari M, Salio M, Galli C, Norais N, Rappuoli R, Lanzavecchia A, et al. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J Exp Med. 1998;187(1):135–40.Google Scholar
  91. 91.
    Wang J, Brooks EG, Bamford KB, Denning TL, Pappo J, Ernst PB. Negative selection of T cells by Helicobacter pylori as a model for bacterial strain selection by immune evasion. J Immunol. 2001;167(2):926–34.Google Scholar
  92. 92.
    Shi Y, Liu XF, Zhuang Y, Zhang JY, Liu T, Yin Z, et al. Helicobacter pylori-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J Immunol. 2010;184(9):5121–9.  https://doi.org/10.4049/jimmunol.0901115.Google Scholar
  93. 93.
    Kronsteiner B, Bassaganya-Riera J, Philipson C, Viladomiu M, Carbo A, Pedragosa M, et al. Helicobacter pylori infection in a pig model is dominated by Th1 and cytotoxic CD8 + T cell responses. Infect Immun. 2013;81(10):3803–13.  https://doi.org/10.1128/IAI.00660-13.Google Scholar
  94. 94.
    Mookerjee A, Graciotti M, Kandalaft L. A cancer vaccine with dendritic cells differentiated with GM-CSF and IFNa and pulsed with a squaric acid treated cell lysate improves T cell priming and tumor growth control in a mouse model. Bioimpacts. 2018;8(4):243–52.Google Scholar
  95. 95.
    Koch M, Meyer TF, Moss SF. Inflammation, immunity, vaccines for Helicobacter pylori infection. Helicobacter. 2013;18(s1):18–23.Google Scholar
  96. 96.
    Malfertheiner P, Selgrad M, Wex T, Bornschein J, Palla E, Del Giudice G, et al. 1047 efficacy of an investigational recombinant antigen based vaccine against a CagA H. pylori infectious challenge in healthy volunteers. Gastroenterology. 2012;142(5):–184.Google Scholar
  97. 97.
    Chen J, Lin M, Li N, Lin L, She F. Therapeutic vaccination with Salmonella-delivered codon-optimized outer inflammatory protein DNA vaccine enhances protection in Helicobacter pylori infected mice. Vaccine. 2012;30(36):5310–5.Google Scholar
  98. 98.
    Altman E, Chandan V, Harrison BA, Veloso-Pita R, Li J, KuoLee R, et al. Design and immunological properties of Helicobacter pylori glycoconjugates based on a truncated lipopolysaccharide lacking Lewis antigen and comprising an α-1, 6-glucan chain. Vaccine. 2012;30(50):7332–41.Google Scholar
  99. 99.
    O’Riordan AA, Morales VA, Mulligan L, Faheem N, Windle HJ, Kelleher DP. Alkyl hydroperoxide reductase: a candidate Helicobacter pylori vaccine. Vaccine. 2012;30(26):3876–84.Google Scholar
  100. 100.
    Stent A, Every AL, Ng GZ, Chionh YT, Ong LS, Edwards SJ, et al. Helicobacter pylori thiolperoxidase as a protective antigen in single-and multi-component vaccines. Vaccine. 2012;30(50):7214–20.Google Scholar
  101. 101.
    Li Y, Jiang Y, Xi Y, Zhang L, Luo J, He D, et al. Identification and characterization of H-2 d restricted CD4 + T cell epitopes on Lpp20 of Helicobacter pylori. BMC Immunol. 2012;13(1):1.Google Scholar
  102. 102.
    Yang W-C, Chen L, Li H-B, Li B, Hu J, Zhang J-Y, et al. Identification of two novel immunodominant UreB CD4 + T cell epitopes in Helicobacter pylori infected subjects. Vaccine. 2013;31(8):1204–9.Google Scholar
  103. 103.
    Li H-B, Zhang J-Y, He Y-F, Chen L, Li B, Liu K-Y, et al. Systemic immunization with an epitope-based vaccine elicits a Th1-biased response and provides protection against Helicobacter pylori in mice. Vaccine. 2012;31(1):120–6.Google Scholar
  104. 104.
    Guo L, Liu K, Xu G, Li X, Tu J, Tang F, et al. Prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA against Helicobacter pylori infection in a BALB/c mice model. Appl Microbiol Biotechnol. 2012;95(6):1437–44.Google Scholar
  105. 105.
    Ottsjö LS, Flach C-F, Clements J, Holmgren J, Raghavan S. A double mutant heat-labile toxin from Escherichia coli, LT (R192G/L211A), is an effective mucosal adjuvant for vaccination against Helicobacter pylori infection. Infect Immun. 2013;81(5):1532–40.Google Scholar
  106. 106.
    Mori J, Vranac T, Smrekar B, Černilec M, Šerbec V, Horvat S, et al. Chimeric flagellin as the self-adjuvanting antigen for the activation of immune response against Helicobacter pylori. Vaccine. 2012;30(40):5856–63.Google Scholar
  107. 107.
    Vermoote M, Van Steendam K, Flahou B, Smet A, Pasmans F, Glibert P, et al. Immunization with the immunodominant Helicobacter suis urease subunit B induces partial protection against H. suis infection in a mouse model. Vet Res. 2012;43(1):1.Google Scholar
  108. 108.
    Garhart CA, Redline RW, Nedrud JG, Czinn SJ. Clearance of Helicobacter pylori infection and resolution of postimmunization gastritis in a kinetic study of prophylactically immunized mice. Infect Immun. 2002;70(7):3529–38.Google Scholar
  109. 109.
    Kleanthous H, Tibbitts TJ, Gray HL, Myers GA, Lee CK, Ermak TH, et al. Sterilizing immunity against experimental Helicobacter pylori infection is challenge-strain dependent. Vaccine. 2001;19(32):4883–95.Google Scholar
  110. 110.
    Dubois A, Lee CK, Fiala N, Kleanthous H, Mehlman PT, Monath T. Immunization against natural Helicobacter pylori infection in nonhuman primates. Infect Immun. 1998;66(9):4340–6.Google Scholar
  111. 111.
    Solnick JV, Canfield DR, Hansen LM, Torabian SZ. Immunization with recombinant Helicobacter pylori urease in specific-pathogen-free rhesus monkeys (Macaca mulatta). Infect Immun. 2000;68(5):2560–5.Google Scholar
  112. 112.
    Sayi A, Kohler E, Toller IM, Flavell RA, Müller W, Roers A, et al. TLR-2-activated B cells suppress Helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. J Immunol. 2011;186(2):878–90.Google Scholar
  113. 113.
    Sharma S, Miller G, PEREZ-PEREZ G, Gupta R, Blaser M. Humoral and cellular immune recognition of Helicobacter pylori proteins are not concordant. J Clin Exp Immunol. 1994;97(1):126–32.Google Scholar
  114. 114.
    Lundgren A, Suri-Payer E, Enarsson K, Svennerholm A-M, Lundin BS. Helicobacter pylori-specific CD4 + CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect Immun. 2003;71(4):1755–62.Google Scholar
  115. 115.
    Rad R, Brenner L, Bauer S, Schwendy S, Layland L, da Costa CP, et al. CD25+/Foxp3 + T cells regulate gastric inflammation and Helicobacter pylori colonization in vivo. Gastroenterology. 2006;131(2):525–37.Google Scholar
  116. 116.
    Raghavan S, Suri-Payer E, Holmgren J. Antigen-specific in vitro suppression of murine Helicobacter pylori-reactive immunopathological T cells by CD4 + CD25 + regulatory T cells. Scand J Immunol. 2004;60(1-2):82–8.Google Scholar
  117. 117.
    Ding H, Nedrud JG, Blanchard TG, Zagorski BM, Li G, Shiu J, et al. Th1-mediated immunity against Helicobacter pylori can compensate for lack of Th17 cells and can protect mice in the absence of immunization. PloS One. 2013;8(7):e69384.Google Scholar
  118. 118.
    Blanchard TG, Czinn SJ. Current status and prospects for a Helicobacter pylori vaccine. Gastroenterol Clin N Am. 2015;44(3):677–89.Google Scholar
  119. 119.
    Blanchard TG, Czinn SJ, Maurer R, Thomas WD, Soman G, Nedrud JG. Urease-specific monoclonal antibodies prevent Helicobacter felis infection in mice. Infect Immun. 1995;63(4):1394–9.Google Scholar
  120. 120.
    Zeng M, Mao X-H, Li J-X, Tong W-D, Wang B, Zhang Y-J, et al. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386(10002):1457–64.Google Scholar
  121. 121.
    Michetti P, Kreiss C, Kotloff KL, Porta N, Blanco JL, Bachmann D, et al. Oral immunization with urease and Escherichia coli heat-labile enterotoxin is safe and immunogenic in Helicobacter pylori-infected adults. Gastroenterology. 1999;116(4):804–12.Google Scholar
  122. 122.
    Kotloff KL, Sztein MB, Wasserman SS, Losonsky GA, DiLorenzo SC, Walker RI. Safety and immunogenicity of oral inactivated whole-cell Helicobacter pylori vaccine with adjuvant among volunteers with or without subclinical infection. Infect Immun. 2001;69(6):3581–90.Google Scholar
  123. 123.
    Aebischer T, Bumann D, Epple H-J, Metzger W, Schneider T, Cherepnev G, et al. Correlation of T cell response and bacterial clearance in human volunteers challenged with Helicobacter pylori revealed by randomised controlled vaccination with Ty21a-based Salmonella vaccines. Gut. 2008;57(8):1065–72.Google Scholar
  124. 124.
    Walduck AK, Becher D. Leptin, CD4 + Treg and the prospects for vaccination against H. pylori infection. Front Immunol. 2012;3:316.Google Scholar
  125. 125.
    Zhang H-x, Qiu Y-y, Zhao Y-h, Liu X-t, Liu M, Yu A-l. Immunogenicity of oral vaccination with Lactococcus lactis derived vaccine candidate antigen (UreB) of Helicobacter pylori fused with the human interleukin 2 as adjuvant. Mol Cell Probes. 2014;28(1):25–30.Google Scholar
  126. 126.
    Sarfo FS, Eberhardt KA, Dompreh A, Kuffour EO, Soltau M, Schachscheider M, et al. Helicobacter pylori infection is associated with higher CD4 T cell counts and lower HIV-1 viral loads in ART-naïve HIV-positive patients in Ghana. PloS One. 2015;10(11):e0143388.Google Scholar
  127. 127.
    Guo L, Yang H, Tang F, Yin R, Liu H, Gong X, et al. Oral immunization with a multivalent epitope-based vaccine, based on NAP, Urease, HSP60, and HpaA, provides therapeutic effect on H. pylori infection in mongolian gerbils. Front Cell Infect Microbiol. 2017;7:349.Google Scholar
  128. 128.
    Wang X, Willen R, Svensson M, Ljungh Å, WadstrÖm T. Two-year follow-up of Helicobacter pylori infection in C57BL/6 and Balb/cA mice. Apmis. 2003;111(4):514–22.Google Scholar
  129. 129.
    Dehghani J, Movafeghi A, Barzegari A, Barar J. Efficient and stable transformation of Dunaliella pseudosalina by 3 strains of Agrobacterium tumefaciens. Bioimpacts. 2017;7(4):247–54.  https://doi.org/10.15171/bi.2017.29.Google Scholar
  130. 130.
    Specht EA, Mayfield SP. Algae-based oral recombinant vaccines. Front Microbiol. 2014;5:60.Google Scholar
  131. 131.
    Barzegari A, Saeedi N, Zarredar H, Barar J, Omidi Y. The search for a promising cell factory system for production of edible vaccine: spirulina as a robust alternate to plants. Hum Vaccin Immunother. 2014;10(8):2497–502.Google Scholar

Copyright information

© The International Gastric Cancer Association and The Japanese Gastric Cancer Association 2018

Authors and Affiliations

  1. 1.Research Center for Pharmaceutical Nanotechnology, Biomedicine InstituteTabriz University of Medical SciencesTabrizIran
  2. 2.Department of Food Science and Technology, Tabriz BranchIslamic Azad UniversityTabrizIran
  3. 3.Department of Pharmaceutics, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran

Personalised recommendations