Advertisement

Molecular Weight Dependence of Associative Behavior in Polyimide/DMF Solutions

  • Hong-Xiang Chen
  • En-Song ZhangEmail author
  • Mei Hong
  • Wei Liu
  • Xue-Min Dai
  • Quan Chen
  • Xue-Peng Qiu
  • Xiang-Ling JiEmail author
Article
  • 8 Downloads

Abstract

Eight 6FDA-TFDB polyimide (PI) samples with absolute molecular weights ranging from 1.25 × 105 g·mol−1 to 3.11 × 105 g·mol−1 are obtained by precipitation fractionation. Rheological experiments are conducted to determine the influence of molecular weight on the associating behavior of PI in N,N′-dimethylformamide (DMF) solutions in a broad volume fraction, including abnormal steady shear flow, solution heterogeneity, and scaling behavior. Abnormal flow behaviors, i.e., multi-region shear thinning and weak shear thickening, are studied, and these behaviors have not been reported in literature. The heterogeneity of PI/DMF solutions is examined by dynamic rheological test. By plotting ηsp versus φ/φη, four concentration regions of I–IV can be distinguished for all PI samples with various molecular weights. The scaling results in different concentration regions are in good agreement with the associative polymer theory proposed by Rubinstein and Semenov. The scaling exponents do not show molecular weight dependence in concentration regions I and II. In concentration regions III and IV, the scaling exponents change little when the molecular weight is below 242 k but increase when the molecular weight increases from 242 k to 311 k. This work can help us to understand polyimide solution properties from dilute to semidilute entangled solutions, and will guide the polyimide solution preparation for different processing.

Keywords

Soluble polyimide Molecular weight Rheology Associative polymer Scaling behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2014CB643604) and the National Natural Science Foundation of China (No. 51173178).

Supplementary material

10118_2020_2358_MOESM1_ESM.pdf (659 kb)
Molecular Weight Dependence of Associative Behavior in Polyimide/DMF Solutions

References

  1. 1.
    Ogura, M.; Tokuda, H.; Imabayashi, S.; Watanabe, M. Preparation and solution behavior of a thermoresponsive diblock copolymer of poly(ethyl glycidyl ether) and poly(ethylene oxide) Langmuir, 2007, 23, 9429–34.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Renou, F.; Benyahia, L.; Nicolai, T. Influence of adding unfunctionalized PEO on the viscoelasticity and the structure of dense polymeric micelle solutions formed by hydrophobically end-capped PEO Macromolecules, 2007, 40, 4626–4634.CrossRefGoogle Scholar
  3. 3.
    Castelletto, V.; Hamley, I. W.; Yuan, X. F.; Kelarakis, A.; Booth, C. Structure and rheology of aqueous micellar solutions and gels formed from an associative poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) triblock copolymer Soft Matter, 2005, 1, 138–145.CrossRefGoogle Scholar
  4. 4.
    Suzuki, S.; Uneyama, T.; Watanabe, H. Concentration dependence of nonlinear rheological properties of hydrophobically modified ethoxylated urethane aqueous solutions Macromolecules, 2013, 46, 3497–3504.CrossRefGoogle Scholar
  5. 5.
    Ding, K.; Wang, F.; Wu, F. Association behavior of porphyrin pendants in pH-sensitive water-soluble polymer Chinese J. Polym. Sci., 2012, 30, 63–71.CrossRefGoogle Scholar
  6. 6.
    Golkaram, M.; Fodor, C.; Ruymbeke, E.; Loos, K. Linear viscoelasticity of weakly hydrogen-bonded polymers near and below the sol-gel transition Macromolecules, 2018, 51, 4910–4916.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Candau, F.; Regalado, E. J.; Selb, J. Scaling behavior of the zero shear viscosity of hydrophobically modified poly(acrylamide)s Macromolecules, 1998, 31, 5550–5552.CrossRefGoogle Scholar
  8. 8.
    Yang, X.; Liu, J.; Li, P.; Liu, C. Self-assembly properties of hydrophobically associative perfluorinated polyacrylamide in dilute and semi-dilute solutions J. Polym. Res., 2015, 22, 103.CrossRefGoogle Scholar
  9. 9.
    Xu, D.; Craig, S. L. Scaling laws in supramolecular polymer networks Macromolecules, 2011, 44, 5465–5472.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Li, J.; Wu, F.; Wang, E. Hydrophobically associating polyacrylamides modified by a novel self-associative cationic monomer Chinese J. Polym. Sci., 2010, 28, 137–145.CrossRefGoogle Scholar
  11. 11.
    Witten, T. A. Associative polymers and shear thickening Journal de Physique, 1988, 49, 1055–1063.CrossRefGoogle Scholar
  12. 12.
    Kujawa, P.; Audibert-Hayet, A.; Selb, J.; Candau, F. Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions J. Polym. Sci., Part B: Polym. Phys., 2010, 42, 1640–1655.CrossRefGoogle Scholar
  13. 13.
    Chassenieux, C.; Nicolai, T.; Benyahia, L. Rheology of associative polymer solutions Curr. Opin. Colloid Interface Sci., 2011, 16, 18–26.CrossRefGoogle Scholar
  14. 14.
    Rubinstein, M.; Semenov, A. N. Dynamics of entangled solutions of associative polymers Macromolecules, 2001, 34, 1058–1068.CrossRefGoogle Scholar
  15. 15.
    Feldman, K. E.; Kade, M. J.; Meijer, E. W.; Hawker, C. J.; Kramer, E. J. Model transient networks from strongly hydrogen-bonded polymers Macromolecules, 2009, 42, 9072–9081.CrossRefGoogle Scholar
  16. 16.
    Regalado, E. J.; Selb, J.; Candau, F. Viscoelastic behavior of semidilute solutions of multisticker polymer chains Macromolecules, 1999, 32, 8580–8588.CrossRefGoogle Scholar
  17. 17.
    Cram, S. L.; Brown, H. R.; Spinks, G. M.; Hourdet, D.; Creton, C. Hydrophobically modified dimethylacrylamide synthesis and rheological behavior Macromolecules, 2005, 38, 2981–2989.CrossRefGoogle Scholar
  18. 18.
    Kujawa, P.; Audibert-Hayet, A.; Selb, J.; Candau, F. Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes Macromolecules, 2006, 39, 384–392.CrossRefGoogle Scholar
  19. 19.
    Ding, M. Isomeric polyimides Prog. Polym. Sci., 2007, 32, 623–668.CrossRefGoogle Scholar
  20. 20.
    Chisca, S.; Musteata, V. E.; Sava, I.; Bruma, M. Dielectric behavior of some aromatic polyimide films Eur. Polym. J., 2011, 47, 1186–1197.CrossRefGoogle Scholar
  21. 21.
    Liaw, D.; Wang, K.; Huang, Y.; Lee, K.; Lai, J.; Ha, C. Advanced polyimide materials: syntheses, physical properties and applications Prog. Polym. Sci., 2012, 37, 907–974.CrossRefGoogle Scholar
  22. 22.
    Dong, Z.; Feng, T.; Zheng, C.; Li, G.; Liu, F.; Qiu, X. Mechanical properties of polyimide/multi-walled carbon nanotube composite fibers Chinese J. Polym. Sci., 2016, 34, 1386–1395.CrossRefGoogle Scholar
  23. 23.
    Dhara, M. G.; Banerjee, S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups Prog. Polym. Sci., 2010, 35, 1022–1077.CrossRefGoogle Scholar
  24. 24.
    Yang, C.; Su, Y.; Wen, S.; Hsiao, S. Highly optically transparent/low color polyimide films prepared from hydroquinone- or resorcinol-based bis(ether anhydride) and trifluoromethyl-containing bis(ether amine)s Polymer, 2006, 47, 7021–7033.CrossRefGoogle Scholar
  25. 25.
    Liu, G.; Qiu, X.; Bo, S.; Ji, X. Chain conformation and local rigidity of soluble polyimide (II): isomerized polyimides in THF Chem. Res. Chin. Univ., 2012, 28, 329–333.Google Scholar
  26. 26.
    Liu, G.; Qiu, X.; Siddiq, M.; Bo, S.; Ji, X. Temperature dependence of chain conformation and local rigidity of isomerized polyimides in dimethyl formamide Chem. Res. Chin. Univ., 2013, 29, 1022–1028.CrossRefGoogle Scholar
  27. 27.
    Savitski, E. P.; Li, F.; Lin, S. H.; Mccreight, K. W.; Wu, W.; Hsieh, E.; Rapold, R. F.; Leland, M. E.; Mclntyre, D. M.; Harris, F. W.; Cheng, S. Z. D.; Wu, C. Investigation of the solution behavior of organo soluble aromatic polyimides Int. J. Polym. Anal. Charact., 1997, 4, 153–172.CrossRefGoogle Scholar
  28. 28.
    Zhang, E.; Dai, X.; Dong, Z.; Qiu, X.; Ji, X. Critical concentration and scaling exponents of one soluble polyimide from dilute to semidilute entangled solutions Polymer, 2016, 84, 275–285.CrossRefGoogle Scholar
  29. 29.
    Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent Polymer, 2005, 46, 4799–4810.CrossRefGoogle Scholar
  30. 30.
    Zhang, E.; Chen, H.; Dai, X.; Liu, X.; Yang, W.; Liu, W.; Dong, Z.; Qiu, X.; Ji, X. Influence of molecular weight on scaling exponents and critical concentrations of one soluble 6FDA-TFDB polyimide in DMF solution J. Polym. Res., 2017, 24, 47.CrossRefGoogle Scholar
  31. 31.
    Zhang, E.; Dai, X.; Zhu, Y.; Chen, Q.; Sun, Z.; Qiu, X.; Ji, X. Associative behavior of one polyimide with high molecular weight in solution through a relatively weak interaction Polymer, 2018, 141, 166–174.CrossRefGoogle Scholar
  32. 32.
    Doi, M.; Edwards, S. F. The theory of polymer dynamics. Oxford university press Inc., New York, 1986, p. 91Google Scholar
  33. 33.
    Han, C. D.; Jhon, M. S. Correlations of the first normal stress difference with shear stress and of the storage modulus with loss modulus for homopolymers J. Appl. Polym. Sci., 1986, 32, 3809–3840.CrossRefGoogle Scholar
  34. 34.
    Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassage., O. Dynamics of polymeric liquids, Vol 1: Fluid mechanics. Wiley, New York, 1987, p. 576Google Scholar
  35. 35.
    Jin, L.; Tan, Y.; Shangguan, Y.; Lin, Y.; Xu, B.; Wu, Q.; Zheng, Q. Multi-region shear thinning for subsequent static self-thickening in chitosan-graft-polyacrylamide aqueous solution J. Phys. Chem. B, 2013, 117, 15111–21.PubMedCrossRefGoogle Scholar
  36. 36.
    van Egmond, J. W. Shear-thickening in suspensions, associating polymers, worm-like micelles, and poor polymer solutions Curr. Opin. Colloid Interface Sci., 1998, 3, 385–390.CrossRefGoogle Scholar
  37. 37.
    Witten, T. A.; Cohen, M. H. Crosslinking in shear-thickening ionomers Macromolecules, 1985, 18, 1915–1918.CrossRefGoogle Scholar
  38. 38.
    Wang, S. Q. Transient network theory for shear-thickening fluids and physically crosslinked networks Macromolecules, 1992, 25, 7003–7010.CrossRefGoogle Scholar
  39. 39.
    Xu, D.; Liu, C. Y.; Craig, S. L. Divergent shear thinning and shear thickening behavior of supramolecular polymer networks in semidilute entangled polymer solutions Macromolecules, 2011, 44, 2343–2353.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Vaccaro, A.; Marrucci, G. A model for the nonlinear rheology of associating polymers J. Non-Newtonian Fluid Mech., 2000, 92, 261–273.CrossRefGoogle Scholar
  41. 41.
    Hackelbusch, S.; Rossow, T.; van Assenbergh, P.; Seiffert, S. Chain dynamics in supramolecular polymer networks Macromolecules, 2013, 46, 6273–6286.CrossRefGoogle Scholar
  42. 42.
    Watanabe, H. Viscoelasticity and dynamics of entangled polymers Prog. Polym. Sci., 1999, 24, 1253–1403.CrossRefGoogle Scholar
  43. 43.
    Eom, Y.; Kim, B. C. Solubility parameter-based analysis of polyacrylonitrile solutions in N,N-dimethyl formamide and dimethyl sulfoxide Polymer, 2014, 55, 2570–2577.CrossRefGoogle Scholar
  44. 44.
    Rakesh, G.; Deshpande, A. P. Rheology of crosslinking poly vinyl alcohol systems during film formation and gelation Rheol. Acta, 2010, 42, 1029–1039.CrossRefGoogle Scholar
  45. 45.
    Cox, W. P.; Merz, E. H. Correlation of dynamic and steady flow viscosities J. Polym. Sci., 1958, 28, 619–622.CrossRefGoogle Scholar
  46. 46.
    Suzuki, S.; Uneyama, T.; Inoue, T.; Watanabe, H. Nonlinear rheology of telechelic associative polymer networks: shear thickening and thinning behavior of hydrophobically modifiedethoxylated urethane (HEUR) in aqueous solution Macromolecules, 2012, 45, 888–898.CrossRefGoogle Scholar
  47. 47.
    Rubinstein, M.; Dobrynin, A. V. Associations leading to formation of reversible networks and gels Curr. Opin. Colloid Interface Sci., 1999, 4, 83–87.CrossRefGoogle Scholar
  48. 48.
    Leibler, L.; Rubinstein, M.; Colby, R. H. Dynamics of reversible networks Macromolecules, 1991, 24, 4701–4712.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hong-Xiang Chen
    • 1
    • 2
  • En-Song Zhang
    • 1
    Email author
  • Mei Hong
    • 1
    • 2
  • Wei Liu
    • 1
  • Xue-Min Dai
    • 3
  • Quan Chen
    • 1
  • Xue-Peng Qiu
    • 3
  • Xiang-Ling Ji
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Laboratory of Polymer Composites and Engineering, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations