Advertisement

Anionic Polymerization of Butadiene Using Lithium/Potassium Multi-metallic Systems: Influence on Polymerization Control and Polybutadiene Microstructure

  • Antoine Forens
  • Kevin Roos
  • Charlotte Dire
  • Benoit Gadenne
  • Stéphane CarlottiEmail author
Article
  • 7 Downloads

Abstract

Thermal, mechanical, and viscoelastic properties of polybutadiene-based rubber materials are highly dependent on polybutadiene microstructure. The use of polar modifier in association with alkyllithium is a well-known method to obtain polybutadiene with a high vinyl content. Another approach is to use bimetallic initiating species such as alkyllithium combined to heavier alkali metal alkoxide (RONa, ROK…). The polymerization control is nevertheless not achieved and several parameters were found to influence it. Using bimetallic initiating systems based on alkyllithium and a potassium alkoxide, alkyllithium structure, initiator preformation time, and initiator composition were identified as parameters influencing the anionic polymerization process of butadiene and/or polybutadiene microstructure. In addition, the use of trimetallic systems based on alkyllithium, potassium alkoxide, and alkylaluminum was investigated in order to prevent side reactions regardless of the [K]/[Li] ratio and of the initiator preformation time.

Keywords

Polybutadiene Anionic polymerization Microstructure (Multi)metallic systems Lithium/potassium-based systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2020_2355_MOESM1_ESM.pdf (665 kb)
Anionic Polymerization of Butadiene Using Lithium/Potassium Multi-metallic Systems: Influence on Polymerization Control and Polybutadiene Microstructure

References

  1. 1.
    Aggarwal, S. L.; Hargis, I. G.; Livigni, R. A.; Fabris, H. J.; Marker, L. F. in Advances in elastomers and rubber elasticity, ed. by Lal, J.; Mark, J. E. Springer US, Boston MA, 1986, p. 17.Google Scholar
  2. 2.
    Ryu, M. S.; Kim, H. G.; Kim, H. Y.; Min, K. S.; Kim, H. J.; Lee, H. M. Prediction of the glass transition temperature and design of phase diagrams of butadiene rubber and styrene-butadiene rubber via molecular dynamics simulations Phys. Chem. Chem. Phys., 2017, 19, 16498–16506.CrossRefGoogle Scholar
  3. 3.
    Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 1: Lewis base (a) amine-type polar modifiers Int. J. Polym. Anal. Charact., 2015, 20, 574–588.CrossRefGoogle Scholar
  4. 4.
    Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 2: Lewis base (a) amine-ether and ether-type polar modifiers Int. J. Polym. Anal. Charact., 2015, 20, 602–611.CrossRefGoogle Scholar
  5. 5.
    Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 3: Lewis acid alkoxide (μ) and Lewis base amine, amine-ether, and ether mixed-type (Σ+μ) polar modifiers Int. J. Polym. Anal. Charact., 2016, 21, 44–45.CrossRefGoogle Scholar
  6. 6.
    Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 4: acid-base polar modifiers forming σ-μ complexes: amine-alkoxide, amine-ether-alkoxide, and ether-alkoxide Int. J. Polym. Anal. Charact., 2016, 21, 59–68.CrossRefGoogle Scholar
  7. 7.
    Kozak, R.; Matlengiewicz, M. Influence of polar modifiers on microstructure of polybutadiene obtained by anionic polymerization. Part 5: Comparison of μ, σ, Σ+μ, and Σμ complexes Int. J. Polym. Anal. Charact., 2017, 22, 51–61.CrossRefGoogle Scholar
  8. 8.
    Bywater, S.; Firat, Y.; Black, P. E. Microstructures of polybutadienes prepared by anionic polymerization in polar solvents. Ion-pair and solvent effects J. Polym. Sci. Polym. Chem. Ed., 1984, 22, 669–672.CrossRefGoogle Scholar
  9. 9.
    Arest-Yakubovich, A. A.; Basova, R. V.; Nakhmanovich, B. I.; Kristalnyi, E. V. The main special characteristics of anionic polymerization initiated by group II metals Acta Polym., 1984, 35, 1–7.CrossRefGoogle Scholar
  10. 10.
    Salle, R.; Pham, Q. T. Polymérisation anionique des diènes. VI. Microstructure des polybutadiène et polyisoprène par résonance magnétique protonique à 250 MHz et mécanismes de propagation J. Polym. Sci. Polym. Chem. Ed., 1977, 15, 1799–1810.CrossRefGoogle Scholar
  11. 11.
    Lochmann, L. Reaction of organolithium compounds with alkali metal alkoxides — A route to superbases Eur. J. Inorg. Chem., 2000, 6, 1115–1126.CrossRefGoogle Scholar
  12. 12.
    Schlosser, M.; Strunk, S. The “super-basic” butyllithium/potassium tert-butoxide mixture and other lickor-reagents. Tetrahedron Lett.1984, 25, 741–744.CrossRefGoogle Scholar
  13. 13.
    Lochmann, L.; Petránek, J. More efficient metallation of alkylbenzenes by modified superbases from butyllithium and potassium alkoxides. Effect of alkoxide structure and concentration Tetrahedron Lett., 1991, 32, 1483–1488.CrossRefGoogle Scholar
  14. 14.
    Lochmann, L.; Trekoval, J. Lithium-potassium exchange in alkyllithium/potassium t-pentoxide systems: XIV. Interactions of alkoxides J. Organomet. Chem., 1987, 326, 1–7.CrossRefGoogle Scholar
  15. 15.
    Hsieh, H. L.; Wofford, C. F. Alkyllithium and alkali metal tert-butoxide as polymerization initiator J. Polym. Sci. A1, 1969, 7, 449–460.CrossRefGoogle Scholar
  16. 16.
    Maréchal, J. M.; Carlotti, S.; Shcheglova, L.; Deffieux, A. Stereoregulation in the anionic polymerization of styrene initiated by superbases Polymer, 2003, 44, 7601–7607.CrossRefGoogle Scholar
  17. 17.
    Patterson, D. B.; Halasa, A. F. Anionic polymerization of 1,3-butadiene to highly crystalline high trans-1,4-poly(butadiene) with potassium catalysts generated from an alkyllithium and potassium tert-amyloxide Macromolecules, 1991, 24, 4489–4494.CrossRefGoogle Scholar
  18. 18.
    Nakhmanovich, B. I.; Zolotareva, I. V.; Arest-Yakubovich, A. A. Study on the mechanism of anionic polymerization with mixed RLi-R’OK Initiators, 1. Polymerization of butadiene Macromol. Chem. Phys., 1999, 200, 2015–2021.CrossRefGoogle Scholar
  19. 19.
    Wofford, C. F.; Hsieh, H. L. Copolymerization of butadiene and styrene by initiation with alkyllithium and alkali metal tert-butoxides. J. Polym. Sci. A11969, 7(2), 461–469.CrossRefGoogle Scholar
  20. 20.
    Desbois, P.; Fontanille, M.; Deffieux, A.; Warzelhan, V.; Schade, C. Towards the control of the reactivity in high temperature anionic polymerization of styrene: Retarded anionic polymerization. 3 -Influence of triisobutylaluminum on the reactivity of polystyryllithium species Macromol. Symp., 2000, 157, 151–160.CrossRefGoogle Scholar
  21. 21.
    Lochmann, L.; Janata, M. 50 Years of superbases made from organolithium compounds and heavier alkali metal alkoxides Cent. Eur. J. Chem., 2014, 12, 537–548.CrossRefGoogle Scholar
  22. 22.
    Hsieh, H.; Quirk, R. P. Anionic polymerization: Principles and practical applications. Marcel Dekker, New York, 1996 CrossRefGoogle Scholar
  23. 23.
    Worsfold, D. J.; Bywater, S. Lithium alkyl initiated polymerization of isoprene. Effect of cis/trans isomerization of organolithium compounds on polymer microstructure Macromolecules, 1978, 11, 582–586.CrossRefGoogle Scholar
  24. 24.
    Halasa, A. F.; Mitchell, G. B.; Stayer, M.; Tate, D. P.; Oberster, A. E.; Koch, R. W. Metalation of unsaturated polymers by using activated organolithium compounds and the formation of graft copolymers. II J. Polym. Sci. Polym. Chem. Ed., 1976, 14, 497–506.CrossRefGoogle Scholar
  25. 25.
    Carlotti, S.; Ménoret, S.; Barabanova, A.; Desbois, P.; Deffieux, A. Effect of aluminum derivatives in the retarded styrene anionic polymerization Polymer, 2005, 46, 6836–6843.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Antoine Forens
    • 1
    • 2
  • Kevin Roos
    • 2
  • Charlotte Dire
    • 2
  • Benoit Gadenne
    • 2
  • Stéphane Carlotti
    • 1
    Email author
  1. 1.CNRS, Bordeaux INP, LCPO, UMR 5629Univ. BordeauxPessacFrance
  2. 2.MFP MichelinCentre de Technologie/LadouxClermont-Ferrand cedex 9France

Personalised recommendations