Melt Crystallization of Poly(butylene 2,6-naphthalate)

  • Qian Ding
  • Michelina Soccio
  • Nadia Lotti
  • Dario CavalloEmail author
  • René AndroschEmail author


Poly(butylene 2,6-naphthalate) (PBN) is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit. Polymeric materials made of PBN exhibit excellent anti-abrasion and low friction properties, superior chemical resistance, and outstanding gas barrier characteristics. Many of the properties rely on the presence of crystals and the formation of a semicrystalline morphology. To develop specific crystal structures and morphologies during cooling the melt, precise information about the melt-crystallization process is required. This review article summarizes the current knowledge about the temperature-controlled crystal polymorphism of PBN. At rather low supercooling of the melt, with decreasing crystallization temperature, β’- and α-crystals grow directly from the melt and organize in largely different spherulitic superstructures. Formation of α-crystals at high supercooling may also proceed via intermediate formation of a transient monotropic liquid crystalline structure, then yielding a non-spherulitic semicrystalline morphology. Crystallization of PBN is rather fast since its suppression requires cooling the melt at a rate higher than 6000 K·s−1. For this reason, investigation of the two-step crystallization process at low temperatures requires application of sophisticated experimental tools. These include temperature-resolved X-ray scattering techniques using fast detectors and synchrotron-based X-rays and fast scanning chip calorimetry. Fast scanning chip calorimetry allows freezing the transient liquid-crystalline structure before its conversion into α-crystals, by fast cooling to below its glass transition temperature. Subsequent analysis using polarized-light optical microscopy reveals its texture and X-ray scattering confirms the smectic arrangement of the mesogens. The combination of a large variety of experimental techniques allows obtaining a complete picture about crystallization of PBN in the entire range of melt-supercoolings down to the glass transition, including quantitative data about the crystallization kinetics, semicrystalline morphologies at the micrometer length scale, as well as nanoscale X-ray structure information.


Poly(butylene 2,6-naphthalate) Crystallization Polymorphism Semicrystalline morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Q. D. acknowledges financial support from the China Scholarship Council (CSC), for performing research at the Martin Luther University Halle-Wittenberg (Germany). R. A. and Q. D. acknowledge financial support from Sino-German Center for Research Promotion (GZ 1514).


  1. 1.
    Karayannidis, G. P.; Papageorgiou, G. Z.; Bikiaris, D. N; Tourasanidis, E. V. Synthesis and thermal behaviour of poly-(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer1998, 39, 4129–4134.CrossRefGoogle Scholar
  2. 2.
    Jeong, Y. G.; Jo, W. H.; Lee, S. C. Synthesis and crystallization behavior of poly(m-methylene 2,6-naphthalate-co-1,4-cyclohe-xylenedimethylene 2,6-naphthalate) copolymers. Macromolecules2003, 36, 4051–4059.CrossRefGoogle Scholar
  3. 3.
    Soccio, M.; Finelli, L.; Lotti, N.; Siracusa, V.; Ezquerra, T. A.; Munari, A. Novel ethero atoms containing polyesters based on 2,6-naphthalendicarboxylic acid: a comparative study with poly(butylene naphthalate). J. Polym. Sci., Part B: Polym. Phys.2007, 45, 1694–1703.CrossRefGoogle Scholar
  4. 4.
    Hubbard, P.; Brittain, W. J.; Simonsick, W. J.; Ross, C. W. Synthesis and ring-opening polymerization of poly(alkylene 2,6-naphthalenedicarboxylate) cyclic oligomers. Macromolecules1996, 29, 8304–8307.CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Soccio, M.; Nogales, A.; García-Gutierrez, M. C.; Lotti, N.; Munari, A.; Ezquerra, T. A. Origin of the subglass dynamics in aromatic polyesters by labeling the dielectric relaxation with ethero atoms. Macromolecules2008, 41, 2651–2655.CrossRefGoogle Scholar
  7. 7.
    Mija, et al. 2018, U.S. Pat., US2018/03051A1Google Scholar
  8. 8.
  9. 9.
    Wang, C. S.; Lin, C. H. On the miscibility and transesterification of poly(butylene naphthalate) with a novel phosphorus containing polyester. Polymer2000, 41, 4029–4037.CrossRefGoogle Scholar
  10. 10.
    Yoon, K. H.; Lee, S. C.; Park, O. O. Thermal properties of poly(ethylene 2,6-naphthalate) and poly(butylene 2,6-naphthalate) blends. Polym. J.1994, 26, 816–821.CrossRefGoogle Scholar
  11. 11.
    Dangseeyun, N.; Supaphol, P.; Nithitanakul, M. Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym. Test.2004, 23, 187–194.CrossRefGoogle Scholar
  12. 12.
    Lin, C. H.; Wang, C. S. Miscibility of poly(etherimide) and poly(butylene naphthalate) blends. Polym. Bull.2001, 46, 191–196.CrossRefGoogle Scholar
  13. 13.
    Lee, S. C.; Yoon, K. H.; Kim, J. H. Crystallization kinetics of poly(butylene 2,6-naphthalate) and its copolyesters. Polym. J. 1997, 29, 1–6.CrossRefGoogle Scholar
  14. 14.
    Papageorgiou, G. Z.; Karayannidis, G. P. Multiple melting behaviour of poly(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer1999, 40, 5325–5332.CrossRefGoogle Scholar
  15. 15.
    Papageorgiou, G. Z.; Karayannidis, G. P. Observations during crystallisation of poly(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer2001, 42, 8197–8205.CrossRefGoogle Scholar
  16. 16.
    Papageorgiou, G. Z.; Karayannidis, G. P.; Bikiaris, D. N.; Stergiou, A.; Litsardakis, G.; Makridis, S. S. Wide-angle X-ray diffraction and differential scanning calorimetry study of the crystallization of poly(ethylene naphthalate), poly(butylene naphthalate), and their copolymers. J. Polym. Sci., Part B: Polym. Phys.2004, 42, 843–860.CrossRefGoogle Scholar
  17. 17.
    Papageorgiou, D. G.; Bikiaris, D. N.; Papageorgiou, G. Z. Synthesis and controlled crystallization of in situ prepared poly(butylene-2,6-naphthalate) nanocomposites. Cryst. Eng. Comm. 201820 3590–3600.CrossRefGoogle Scholar
  18. 18.
    Soccio, M.; Gazzano, M.; Lotti, N.; Finelli, L.; Munari, A. Copolymerization: a new tool to selectively induce poly(butylene naphthalate) crystal form. J. Polym. Sci., Part B: Polym. Phys.2009, 47, 1356–1367.CrossRefGoogle Scholar
  19. 19.
    Soccio, M.; Gazzano, M.; Lotti, N.; Finelli, L.; Munari, A. Synthesis and characterization of novel random copolymers based on PBN: influence of thiodiethylene naphthalate co-units on its polymorphic behaviour. Polymer2010, 51, 192–200.CrossRefGoogle Scholar
  20. 20.
    Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules1976, 9, 266–273.CrossRefGoogle Scholar
  21. 21.
    Watanabe, H. Stretching and structure of polybutylene-naphthalene-2,6-dicarboxylate films. Kobunshi. Ronbunshu.1976, 33, 229–237.CrossRefGoogle Scholar
  22. 22.
    Koyano, H.; Yamamoto, Y.; Saito, Y.; Yamanobe, T.; Komoto, T. Crystal structure of poly(butylene-2,6-naphthalate). Polymer1998, 39, 4385–4391.CrossRefGoogle Scholar
  23. 23.
    Chiba, T.; Asai, S.; Xu, W.; Sumita, M. Analysis of crystallization behavior and crystal modifications of poly(butylene-2,6-naphthalene dicarboxylate). J. Polym. Sci., Part B: Polym. Phys.1999, 37, 561–574.CrossRefGoogle Scholar
  24. 24.
    Ju, M. Y.; Huang, J. M.; Chang, F. C. Crystal polymorphism of poly(butylene-2,6-naphthalate) prepared by thermal treatments. Polymer2002, 43, 2065–2074.CrossRefGoogle Scholar
  25. 25.
    Yamanobe, T.; Matsuda, H.; Imai, K.; Hirata, A.; Mori, S.; Komoto, T. Structure and physical properties of naphthalene containing polyesters. I. Structure of poly(butylene 2,6-naphthalate) and poly(ethylene 2,6-naphthalate) as studied by solid state NMR spectroscopy. Polym. J.1996, 28, 177–181.CrossRefGoogle Scholar
  26. 26.
    Tonelli, A. E. The conformations of poly(butylene-terephthalate) and poly(butylene-2,6-naphthalate) chains in their α and β crystalline polymorphs. Polymer2002, 43, 6069–6072.CrossRefGoogle Scholar
  27. 27.
    Milani, A. A revisitation of the polymorphism of poly(butylene-2,6-naphthalate) from periodic first-principles calculations. Polymer2014, 55, 3729–3735.CrossRefGoogle Scholar
  28. 28.
    Soccio, M.; Lotti, N.; Finelli, L.; Munari, A. Equilibrium melting temperature and crystallization kinetics of α- and β ’-PBN crystal forms. Polym. J.2012, 44, 174–180.CrossRefGoogle Scholar
  29. 29.
    Jeong, Y. G.; Jo, W. H.; Lee, S. C. Cocrystallization behavior of poly(butylene terephthalate-co-butylene 2,6-naphthalate) random copolymers. Macromolecules2000, 33, 9705–9711.CrossRefGoogle Scholar
  30. 30.
    Konishi, T.; Nishida, K.; Matsuba, G.; Kanaya, T. Mesomorphc phase of poly(butylene-2,6-naphthalate). Macromolecules2008, 41, 3157–3161.CrossRefGoogle Scholar
  31. 31.
    Tokita, M.; Watanabe, J. Several interesting fields exploited through understanding of polymeric effects on liquid crystals of main-chain polyesters. Polym. J.2006, 38, 611–638.CrossRefGoogle Scholar
  32. 32.
    Tokita, M.; Osada, K.; Watanabe, J. Thermotropic liquid crystals of main-chain polyesters having a mesogenic 4,4’-biphenyldicarboxylate unit XI Smectic liquid crystalline glass. Polym. J.1998, 30, 589–595.CrossRefGoogle Scholar
  33. 33.
    Wunderlich, B. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim. Acta1999, 340, 37–52.CrossRefGoogle Scholar
  34. 34.
    Ju, M. Y.; Chang, F. C. Multiple melting behavior of poly(butylene-2,6-naphthalate). Polymer2001, 42, 5037–5045.CrossRefGoogle Scholar
  35. 35.
    Ding, Q.; Jehnichen, D.; Göbel, M.; Soccio, M.; Lotti, N.; Cavallo, D.; Androsch, R. Smectic liquid crystal Schlieren texture in rapidly cooled poly(butylene naphthalate). Eur. Polym. J.2018101, 90–95.CrossRefGoogle Scholar
  36. 36.
    Gazzano, M.; Soccio, M.; Lotti, N.; Finelli, L.; Munari, A. Crystallization kinetics, melting behavior, and RAP of novel etheroatom containing naphthyl polyesters. J. Therm. Anal. Calorim.2012, 110, 907–915.CrossRefGoogle Scholar
  37. 37.
    Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. Phys. Chem.1887, 22, 286–330.Google Scholar
  38. 38.
    Threlfall, T. Structural and thermodynamic explanations of Ostwald’s rule. Org. Process Res. Dev.2003, 7, 1017–1027.CrossRefGoogle Scholar
  39. 39.
    Androsch, R.; Soccio, M.; Lotti, N.; Cavallo, D.; Schick, C. Cod-crystallization of poly(butylene 2,6-naphthalate) following Ostwald’s rule of stages. Thermochim. Acta2018, 670, 71–75.CrossRefGoogle Scholar
  40. 40.
    Nishida, K.; Zhuravlev, E.; Yang, B.; Schick, C.; Shiraishi, Y.; Kanaya, T. Vitrification and crystallization of poly(butylene-2,6-naphthalate). Thermochim. Acta2015, 603, 110–115.CrossRefGoogle Scholar
  41. 41.
    Bernstein, J. Polymorphism in molecular crystals. Oxford University Press, New York, 2002.Google Scholar
  42. 42.
    Chung, S. Y.; Kim, Y. M.; Kim, J. G.; Kim, Y. J. Mutiphae transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nat. Phys.2009, 5, 68–73.CrossRefGoogle Scholar
  43. 43.
    Gliko, O.; Neumaier, N.; Pan, W.; Haase, I.; Fischer, M.; Bacher, A.; Weinkauf, S.; Vekilov, P. G. A metastable prerequisite for the growth of lumazine synthase crystals. J. Am. Chem. Soc.2005, 127, 3433–3438.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Chung, S.; Shin, S. H.; Bertozzi, C. R.; De Yoreo, J. J. Self-catalyzed growth of S layers va an amorphous-to-crystalline transition limited by folding kinetics. Proc. Natl. Acad. Sci. 2010 107 16536–16541.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Auer, S.; Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature2001, 409, 1020–1023.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Zhang, T. H.; Liu, X. Y. Nucleation: what happens at the initial stage? Angew. Chem. Int. Ed.2009, 48, 1308–1312.CrossRefGoogle Scholar
  47. 47.
    Pérez-Manzano, J.; Fernández-Blázquez, J. P.; Bello, A.; Pérez, E. Liquid-crystalline copolymers of bibenzoate and terephthalate units. Polym. Bull.2006, 56, 571–577.CrossRefGoogle Scholar
  48. 48.
    Hu, Y. S.; Hiltner, A.; Baer, E. Solid state structure and oxygen transport properties of copolyesters based on smectic poly(hexamethylene 4,4’-bibenzoate). Polymer2006, 47, 2423–2433.CrossRefGoogle Scholar
  49. 49.
    Fernández-Blázquez, J. P.; Pérez-Manzano, J.; Bello, A.; Pérez, E. The two crystallization modes of mesophase forming polymers. Macromolecules 2007, 40, 1775–1778.CrossRefGoogle Scholar
  50. 50.
    Heck, B.; Perez, E.; Strobl, G. Two competing crystallization modes in a smectogenic polyester. Macromolecules 2010, 43, 4172–4183.CrossRefGoogle Scholar
  51. 51.
    Jin, J. I.; Kang, C. S. Thermotropic main chain polyesters. Prog. Polym. Sci.1997, 22, 937–973.CrossRefGoogle Scholar
  52. 52.
    Watanabe, J.; Hayashi, M. Thermotropic liquid crystals of polyesters having a mesogenic p,p’-bibenzoate unit. 1. Smectic A mesophase properties of polyesters composed of p,p’-bibenzoic acid and alkylene glycols. Macromolecules1988, 21, 278–280.CrossRefGoogle Scholar
  53. 53.
    Watanabe, J.; Hayashi, M. Thermotropic liquid crystals of polyesters having a mesogenic p,p’-bibenzoate unit. 2. X-ray study on smectic mesophase structures of BB-5 and BB-6. Macromolecules1989, 22, 4083–4088.CrossRefGoogle Scholar
  54. 54.
    Bello, A.; Pereña, J. M.; Pérez, E.; Benavente, R. Thermotropc liquid crystal polyesters derived from 4,4’-biphenyldicarboxylic acid and oxyalkylene spacers. Macromol. Symp.1994, 84, 297–306.CrossRefGoogle Scholar
  55. 55.
    Chen, D.; Zachmann, H. G. Glass transition temperature of copolyesters of PET, PEN and PHB as determined by dynamic mechanical analysis. Polymer1991, 32, 1612–1621.CrossRefGoogle Scholar
  56. 56.
    Watanabe, J.; Hasayashi, M.; Nakata, Y.; Niori, T.; Tokita, M. Smectic liquid crystals in main-chain polymers. Prog. Polym. Sci.1997, 22, 1053–1087.CrossRefGoogle Scholar
  57. 57.
    Martínez-Gómez, A.; Encinar, M.; Fernández-Blázquez, J. P.; Rubio, R. G.; Pérez, E. Liquid crystalline polymers. Springer, Berlin, 2016, p. 453–476.CrossRefGoogle Scholar
  58. 58.
    Keller, A.; Hikosaka, M.; Rastogi, S.; Toda, A.; Barham, P. J.; Goldbeck-Wood, G. An approach to the formation and growth of new phases with application to polymer crystallization: effect of finite size, metastability, and Ostwald’s rule of stages. J. Mater. Sci.1994, 29, 2579–2604.CrossRefGoogle Scholar
  59. 59.
    Keller, A.; Cheng, S. Z. D. The role of metastability in polymer phase transitions. Polymer1998, 39, 4461–4487.CrossRefGoogle Scholar
  60. 60.
    Cheng, S. Z. D.; Zhu, L. Y. Li, C.; Honigfort, P. S.; Keller, A. Size effect of metastable states on semicrystalline polymer structures and morphologies. Thermochim. Acta1999, 332, 105–113.CrossRefGoogle Scholar
  61. 61.
    Cheng, S. Z. D. Phase transitions in polymers. Elsevier, Amsterdam, 2008.Google Scholar
  62. 62.
    Cavallo, D.; Mileva, D.; Portale, G.; Zhang, L.; Balzano, L.; Alfonso, G. C.; Androsch, R. Mesophase-mediated crystallization of poly(butylene-2,6-naphthalate): an example of Ostwald’s rule of stages. ACS Macro Lett.2012, 1, 1051–1055.CrossRefGoogle Scholar
  63. 63.
    Achilias, D. S.; Papageorgiou, G. Z.; Karayannidis, G. P. Evaluation of the isoconversional approach to estimating the Hoffman-Lauritzen parameters from the overall rates of non-isothermal crystallization of polymers. Macromol. Chem. Phys.2005, 206, 1511–1519.CrossRefGoogle Scholar
  64. 64.
    Schick, C.; Mathot, V. Fast scanning calorimetry. Springer, Berlin, 2016.CrossRefGoogle Scholar
  65. 65.
    Toda, A.; Androsch, R.; Schick, C. Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer2016, 91, 239–263.CrossRefGoogle Scholar
  66. 66.
    Androsch, R.; Soccio, M.; Lotti, N.; Jehnichen, D.; Göbel, M.; Schick, C. Enthalpy of formation and disordering temperature of transient monotropic liquid crystals of poly(butylene 2,6-naphthalate). Polymer2018, 158, 77–82.CrossRefGoogle Scholar
  67. 67.
    Cheng, S. Z. Phase transitions in polymers: the role of metastable states. Elsevier, Amsterdam, 2008, p. 25.Google Scholar
  68. 68.
    Singh, S. Liquid crystals fundamentals. World Scientific, New Jersey, 2002, p. 58CrossRefGoogle Scholar
  69. 69.
    de Gennes, P. G.; Prost, J. The physics of liquid crystals. Oxford University Press, New York, 1993, p. 58Google Scholar
  70. 70.
    Sackmann, H.; Demus, D. The polymorphism of liquid crystals. Mol. Cryst.1966, 2, 81–102.CrossRefGoogle Scholar
  71. 71.
    Nehring, J.; Saupe, A. On the schlieren texture in nematic and smectic liquid crystals. J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys.1972, 68, 1–15.CrossRefGoogle Scholar
  72. 72.
    Demus, D. Schlieren textures in smectic liquid crystals. Kristall und Technik1975, 10, 933–946.CrossRefGoogle Scholar
  73. 73.
    Jakeways, R.; Ward, I. M.; Wilding, M. A.; Hall, I. H.; Desborough, I. J.; Pass, M. G. Crystal deformation in aromatic polyesters. J. Polym. Sci., Part B: Polym. Phys.1975, 13, 799–813.Google Scholar
  74. 74.
    Sun, Y. M.; Wang, C. S. Novel copolyesters containing naphthalene structure. I. From bis(hydroxyalkyl)naphthalate and bis[4-(2-hydroxyethoxy)aryl] compounds. J. Polym. Sci., Part A: Polym. Chem.1996, 34, 1783–1792.CrossRefGoogle Scholar
  75. 75.
    Zhuravlev, E.; Schmelzer, J. W.; Abyzov, A. S.; Fokin, V. M.; Androsch, R.; Schick, C. Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst. Growth Des.2015, 15, 786–798.CrossRefGoogle Scholar
  76. 76.
    Androsch, R.; Iqbal, H. N.; Schick, C. Non-isothermal crystal nucleation of poly(L-lactic acid). Polymer2015, 81, 151–158.CrossRefGoogle Scholar
  77. 77.
    Salmerón Sánchez, M.; Mathot, V. B.; Vanden Poel, G.; Gómez Ribelles, J. L. Effect of the cooling rate on the nucleation kinetics of poly(L-lactic acid) and its influence on morphology. Macromolecules2007, 40, 7989–7997.CrossRefGoogle Scholar
  78. 78.
    Papageorgiou, G. Z.; Tsanaktsis, V.; Bikiaris, D. N. Crystallization of poly(butylene-2,6-naphthalate-co-butylene adipate) copolymers: regulating crystal modification of the polymorphic parent homopolymers and biodegradation. Cryst. Eng. Commun. 2014, 16, 7963–7978.CrossRefGoogle Scholar
  79. 79.
    Ding; Q.; Soccio, M.; Lotti, N.; Mahmood, N.; Cavallo, D.; Androsch, R. Crystallization of poly(butylene 2,6-naphthalate) containing diethylene 2,6-naphthalate constitutional defects. Polym. Crys. 2019.Google Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Packaging Design and ArtHunan University of TechnologyZhuzhouChina
  2. 2.Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaBolognaItaly
  3. 3.Department of Chemistry and Industrial ChemistryUniversity of GenovaGenovaItaly
  4. 4.Interdisciplinary Center for Transfer-oriented Research in Natural Sciences (IWE TFN)Martin Luther University Halle-WittenbergHalle/SaaleGermany

Personalised recommendations