Melt Crystallization of Poly(butylene 2,6-naphthalate)
- 5 Downloads
Abstract
Poly(butylene 2,6-naphthalate) (PBN) is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit. Polymeric materials made of PBN exhibit excellent anti-abrasion and low friction properties, superior chemical resistance, and outstanding gas barrier characteristics. Many of the properties rely on the presence of crystals and the formation of a semicrystalline morphology. To develop specific crystal structures and morphologies during cooling the melt, precise information about the melt-crystallization process is required. This review article summarizes the current knowledge about the temperature-controlled crystal polymorphism of PBN. At rather low supercooling of the melt, with decreasing crystallization temperature, β’- and α-crystals grow directly from the melt and organize in largely different spherulitic superstructures. Formation of α-crystals at high supercooling may also proceed via intermediate formation of a transient monotropic liquid crystalline structure, then yielding a non-spherulitic semicrystalline morphology. Crystallization of PBN is rather fast since its suppression requires cooling the melt at a rate higher than 6000 K·s−1. For this reason, investigation of the two-step crystallization process at low temperatures requires application of sophisticated experimental tools. These include temperature-resolved X-ray scattering techniques using fast detectors and synchrotron-based X-rays and fast scanning chip calorimetry. Fast scanning chip calorimetry allows freezing the transient liquid-crystalline structure before its conversion into α-crystals, by fast cooling to below its glass transition temperature. Subsequent analysis using polarized-light optical microscopy reveals its texture and X-ray scattering confirms the smectic arrangement of the mesogens. The combination of a large variety of experimental techniques allows obtaining a complete picture about crystallization of PBN in the entire range of melt-supercoolings down to the glass transition, including quantitative data about the crystallization kinetics, semicrystalline morphologies at the micrometer length scale, as well as nanoscale X-ray structure information.
Keywords
Poly(butylene 2,6-naphthalate) Crystallization Polymorphism Semicrystalline morphologyPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
Q. D. acknowledges financial support from the China Scholarship Council (CSC), for performing research at the Martin Luther University Halle-Wittenberg (Germany). R. A. and Q. D. acknowledge financial support from Sino-German Center for Research Promotion (GZ 1514).
References
- 1.Karayannidis, G. P.; Papageorgiou, G. Z.; Bikiaris, D. N; Tourasanidis, E. V. Synthesis and thermal behaviour of poly-(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer1998, 39, 4129–4134.CrossRefGoogle Scholar
- 2.Jeong, Y. G.; Jo, W. H.; Lee, S. C. Synthesis and crystallization behavior of poly(m-methylene 2,6-naphthalate-co-1,4-cyclohe-xylenedimethylene 2,6-naphthalate) copolymers. Macromolecules2003, 36, 4051–4059.CrossRefGoogle Scholar
- 3.Soccio, M.; Finelli, L.; Lotti, N.; Siracusa, V.; Ezquerra, T. A.; Munari, A. Novel ethero atoms containing polyesters based on 2,6-naphthalendicarboxylic acid: a comparative study with poly(butylene naphthalate). J. Polym. Sci., Part B: Polym. Phys.2007, 45, 1694–1703.CrossRefGoogle Scholar
- 4.Hubbard, P.; Brittain, W. J.; Simonsick, W. J.; Ross, C. W. Synthesis and ring-opening polymerization of poly(alkylene 2,6-naphthalenedicarboxylate) cyclic oligomers. Macromolecules1996, 29, 8304–8307.CrossRefGoogle Scholar
- 5.https://www.teijin.com/products/resin/pbn/
- 6.Soccio, M.; Nogales, A.; García-Gutierrez, M. C.; Lotti, N.; Munari, A.; Ezquerra, T. A. Origin of the subglass dynamics in aromatic polyesters by labeling the dielectric relaxation with ethero atoms. Macromolecules2008, 41, 2651–2655.CrossRefGoogle Scholar
- 7.Mija, et al. 2018, U.S. Pat., US2018/03051A1Google Scholar
- 8.https://marketdesk.us/report/global-polybutylene-naphthalate-resin-pbn-resin-market-pr/66961/#details
- 9.Wang, C. S.; Lin, C. H. On the miscibility and transesterification of poly(butylene naphthalate) with a novel phosphorus containing polyester. Polymer2000, 41, 4029–4037.CrossRefGoogle Scholar
- 10.Yoon, K. H.; Lee, S. C.; Park, O. O. Thermal properties of poly(ethylene 2,6-naphthalate) and poly(butylene 2,6-naphthalate) blends. Polym. J.1994, 26, 816–821.CrossRefGoogle Scholar
- 11.Dangseeyun, N.; Supaphol, P.; Nithitanakul, M. Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym. Test.2004, 23, 187–194.CrossRefGoogle Scholar
- 12.Lin, C. H.; Wang, C. S. Miscibility of poly(etherimide) and poly(butylene naphthalate) blends. Polym. Bull.2001, 46, 191–196.CrossRefGoogle Scholar
- 13.Lee, S. C.; Yoon, K. H.; Kim, J. H. Crystallization kinetics of poly(butylene 2,6-naphthalate) and its copolyesters. Polym. J. 1997, 29, 1–6.CrossRefGoogle Scholar
- 14.Papageorgiou, G. Z.; Karayannidis, G. P. Multiple melting behaviour of poly(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer1999, 40, 5325–5332.CrossRefGoogle Scholar
- 15.Papageorgiou, G. Z.; Karayannidis, G. P. Observations during crystallisation of poly(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer2001, 42, 8197–8205.CrossRefGoogle Scholar
- 16.Papageorgiou, G. Z.; Karayannidis, G. P.; Bikiaris, D. N.; Stergiou, A.; Litsardakis, G.; Makridis, S. S. Wide-angle X-ray diffraction and differential scanning calorimetry study of the crystallization of poly(ethylene naphthalate), poly(butylene naphthalate), and their copolymers. J. Polym. Sci., Part B: Polym. Phys.2004, 42, 843–860.CrossRefGoogle Scholar
- 17.Papageorgiou, D. G.; Bikiaris, D. N.; Papageorgiou, G. Z. Synthesis and controlled crystallization of in situ prepared poly(butylene-2,6-naphthalate) nanocomposites. Cryst. Eng. Comm. 201820 3590–3600.CrossRefGoogle Scholar
- 18.Soccio, M.; Gazzano, M.; Lotti, N.; Finelli, L.; Munari, A. Copolymerization: a new tool to selectively induce poly(butylene naphthalate) crystal form. J. Polym. Sci., Part B: Polym. Phys.2009, 47, 1356–1367.CrossRefGoogle Scholar
- 19.Soccio, M.; Gazzano, M.; Lotti, N.; Finelli, L.; Munari, A. Synthesis and characterization of novel random copolymers based on PBN: influence of thiodiethylene naphthalate co-units on its polymorphic behaviour. Polymer2010, 51, 192–200.CrossRefGoogle Scholar
- 20.Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules1976, 9, 266–273.CrossRefGoogle Scholar
- 21.Watanabe, H. Stretching and structure of polybutylene-naphthalene-2,6-dicarboxylate films. Kobunshi. Ronbunshu.1976, 33, 229–237.CrossRefGoogle Scholar
- 22.Koyano, H.; Yamamoto, Y.; Saito, Y.; Yamanobe, T.; Komoto, T. Crystal structure of poly(butylene-2,6-naphthalate). Polymer1998, 39, 4385–4391.CrossRefGoogle Scholar
- 23.Chiba, T.; Asai, S.; Xu, W.; Sumita, M. Analysis of crystallization behavior and crystal modifications of poly(butylene-2,6-naphthalene dicarboxylate). J. Polym. Sci., Part B: Polym. Phys.1999, 37, 561–574.CrossRefGoogle Scholar
- 24.Ju, M. Y.; Huang, J. M.; Chang, F. C. Crystal polymorphism of poly(butylene-2,6-naphthalate) prepared by thermal treatments. Polymer2002, 43, 2065–2074.CrossRefGoogle Scholar
- 25.Yamanobe, T.; Matsuda, H.; Imai, K.; Hirata, A.; Mori, S.; Komoto, T. Structure and physical properties of naphthalene containing polyesters. I. Structure of poly(butylene 2,6-naphthalate) and poly(ethylene 2,6-naphthalate) as studied by solid state NMR spectroscopy. Polym. J.1996, 28, 177–181.CrossRefGoogle Scholar
- 26.Tonelli, A. E. The conformations of poly(butylene-terephthalate) and poly(butylene-2,6-naphthalate) chains in their α and β crystalline polymorphs. Polymer2002, 43, 6069–6072.CrossRefGoogle Scholar
- 27.Milani, A. A revisitation of the polymorphism of poly(butylene-2,6-naphthalate) from periodic first-principles calculations. Polymer2014, 55, 3729–3735.CrossRefGoogle Scholar
- 28.Soccio, M.; Lotti, N.; Finelli, L.; Munari, A. Equilibrium melting temperature and crystallization kinetics of α- and β ’-PBN crystal forms. Polym. J.2012, 44, 174–180.CrossRefGoogle Scholar
- 29.Jeong, Y. G.; Jo, W. H.; Lee, S. C. Cocrystallization behavior of poly(butylene terephthalate-co-butylene 2,6-naphthalate) random copolymers. Macromolecules2000, 33, 9705–9711.CrossRefGoogle Scholar
- 30.Konishi, T.; Nishida, K.; Matsuba, G.; Kanaya, T. Mesomorphc phase of poly(butylene-2,6-naphthalate). Macromolecules2008, 41, 3157–3161.CrossRefGoogle Scholar
- 31.Tokita, M.; Watanabe, J. Several interesting fields exploited through understanding of polymeric effects on liquid crystals of main-chain polyesters. Polym. J.2006, 38, 611–638.CrossRefGoogle Scholar
- 32.Tokita, M.; Osada, K.; Watanabe, J. Thermotropic liquid crystals of main-chain polyesters having a mesogenic 4,4’-biphenyldicarboxylate unit XI Smectic liquid crystalline glass. Polym. J.1998, 30, 589–595.CrossRefGoogle Scholar
- 33.Wunderlich, B. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim. Acta1999, 340, 37–52.CrossRefGoogle Scholar
- 34.Ju, M. Y.; Chang, F. C. Multiple melting behavior of poly(butylene-2,6-naphthalate). Polymer2001, 42, 5037–5045.CrossRefGoogle Scholar
- 35.Ding, Q.; Jehnichen, D.; Göbel, M.; Soccio, M.; Lotti, N.; Cavallo, D.; Androsch, R. Smectic liquid crystal Schlieren texture in rapidly cooled poly(butylene naphthalate). Eur. Polym. J.2018101, 90–95.CrossRefGoogle Scholar
- 36.Gazzano, M.; Soccio, M.; Lotti, N.; Finelli, L.; Munari, A. Crystallization kinetics, melting behavior, and RAP of novel etheroatom containing naphthyl polyesters. J. Therm. Anal. Calorim.2012, 110, 907–915.CrossRefGoogle Scholar
- 37.Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. Phys. Chem.1887, 22, 286–330.Google Scholar
- 38.Threlfall, T. Structural and thermodynamic explanations of Ostwald’s rule. Org. Process Res. Dev.2003, 7, 1017–1027.CrossRefGoogle Scholar
- 39.Androsch, R.; Soccio, M.; Lotti, N.; Cavallo, D.; Schick, C. Cod-crystallization of poly(butylene 2,6-naphthalate) following Ostwald’s rule of stages. Thermochim. Acta2018, 670, 71–75.CrossRefGoogle Scholar
- 40.Nishida, K.; Zhuravlev, E.; Yang, B.; Schick, C.; Shiraishi, Y.; Kanaya, T. Vitrification and crystallization of poly(butylene-2,6-naphthalate). Thermochim. Acta2015, 603, 110–115.CrossRefGoogle Scholar
- 41.Bernstein, J. Polymorphism in molecular crystals. Oxford University Press, New York, 2002.Google Scholar
- 42.Chung, S. Y.; Kim, Y. M.; Kim, J. G.; Kim, Y. J. Mutiphae transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nat. Phys.2009, 5, 68–73.CrossRefGoogle Scholar
- 43.Gliko, O.; Neumaier, N.; Pan, W.; Haase, I.; Fischer, M.; Bacher, A.; Weinkauf, S.; Vekilov, P. G. A metastable prerequisite for the growth of lumazine synthase crystals. J. Am. Chem. Soc.2005, 127, 3433–3438.PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Chung, S.; Shin, S. H.; Bertozzi, C. R.; De Yoreo, J. J. Self-catalyzed growth of S layers va an amorphous-to-crystalline transition limited by folding kinetics. Proc. Natl. Acad. Sci. 2010 107 16536–16541.PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Auer, S.; Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature2001, 409, 1020–1023.PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Zhang, T. H.; Liu, X. Y. Nucleation: what happens at the initial stage? Angew. Chem. Int. Ed.2009, 48, 1308–1312.CrossRefGoogle Scholar
- 47.Pérez-Manzano, J.; Fernández-Blázquez, J. P.; Bello, A.; Pérez, E. Liquid-crystalline copolymers of bibenzoate and terephthalate units. Polym. Bull.2006, 56, 571–577.CrossRefGoogle Scholar
- 48.Hu, Y. S.; Hiltner, A.; Baer, E. Solid state structure and oxygen transport properties of copolyesters based on smectic poly(hexamethylene 4,4’-bibenzoate). Polymer2006, 47, 2423–2433.CrossRefGoogle Scholar
- 49.Fernández-Blázquez, J. P.; Pérez-Manzano, J.; Bello, A.; Pérez, E. The two crystallization modes of mesophase forming polymers. Macromolecules 2007, 40, 1775–1778.CrossRefGoogle Scholar
- 50.Heck, B.; Perez, E.; Strobl, G. Two competing crystallization modes in a smectogenic polyester. Macromolecules 2010, 43, 4172–4183.CrossRefGoogle Scholar
- 51.Jin, J. I.; Kang, C. S. Thermotropic main chain polyesters. Prog. Polym. Sci.1997, 22, 937–973.CrossRefGoogle Scholar
- 52.Watanabe, J.; Hayashi, M. Thermotropic liquid crystals of polyesters having a mesogenic p,p’-bibenzoate unit. 1. Smectic A mesophase properties of polyesters composed of p,p’-bibenzoic acid and alkylene glycols. Macromolecules1988, 21, 278–280.CrossRefGoogle Scholar
- 53.Watanabe, J.; Hayashi, M. Thermotropic liquid crystals of polyesters having a mesogenic p,p’-bibenzoate unit. 2. X-ray study on smectic mesophase structures of BB-5 and BB-6. Macromolecules1989, 22, 4083–4088.CrossRefGoogle Scholar
- 54.Bello, A.; Pereña, J. M.; Pérez, E.; Benavente, R. Thermotropc liquid crystal polyesters derived from 4,4’-biphenyldicarboxylic acid and oxyalkylene spacers. Macromol. Symp.1994, 84, 297–306.CrossRefGoogle Scholar
- 55.Chen, D.; Zachmann, H. G. Glass transition temperature of copolyesters of PET, PEN and PHB as determined by dynamic mechanical analysis. Polymer1991, 32, 1612–1621.CrossRefGoogle Scholar
- 56.Watanabe, J.; Hasayashi, M.; Nakata, Y.; Niori, T.; Tokita, M. Smectic liquid crystals in main-chain polymers. Prog. Polym. Sci.1997, 22, 1053–1087.CrossRefGoogle Scholar
- 57.Martínez-Gómez, A.; Encinar, M.; Fernández-Blázquez, J. P.; Rubio, R. G.; Pérez, E. Liquid crystalline polymers. Springer, Berlin, 2016, p. 453–476.CrossRefGoogle Scholar
- 58.Keller, A.; Hikosaka, M.; Rastogi, S.; Toda, A.; Barham, P. J.; Goldbeck-Wood, G. An approach to the formation and growth of new phases with application to polymer crystallization: effect of finite size, metastability, and Ostwald’s rule of stages. J. Mater. Sci.1994, 29, 2579–2604.CrossRefGoogle Scholar
- 59.Keller, A.; Cheng, S. Z. D. The role of metastability in polymer phase transitions. Polymer1998, 39, 4461–4487.CrossRefGoogle Scholar
- 60.Cheng, S. Z. D.; Zhu, L. Y. Li, C.; Honigfort, P. S.; Keller, A. Size effect of metastable states on semicrystalline polymer structures and morphologies. Thermochim. Acta1999, 332, 105–113.CrossRefGoogle Scholar
- 61.Cheng, S. Z. D. Phase transitions in polymers. Elsevier, Amsterdam, 2008.Google Scholar
- 62.Cavallo, D.; Mileva, D.; Portale, G.; Zhang, L.; Balzano, L.; Alfonso, G. C.; Androsch, R. Mesophase-mediated crystallization of poly(butylene-2,6-naphthalate): an example of Ostwald’s rule of stages. ACS Macro Lett.2012, 1, 1051–1055.CrossRefGoogle Scholar
- 63.Achilias, D. S.; Papageorgiou, G. Z.; Karayannidis, G. P. Evaluation of the isoconversional approach to estimating the Hoffman-Lauritzen parameters from the overall rates of non-isothermal crystallization of polymers. Macromol. Chem. Phys.2005, 206, 1511–1519.CrossRefGoogle Scholar
- 64.Schick, C.; Mathot, V. Fast scanning calorimetry. Springer, Berlin, 2016.CrossRefGoogle Scholar
- 65.Toda, A.; Androsch, R.; Schick, C. Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer2016, 91, 239–263.CrossRefGoogle Scholar
- 66.Androsch, R.; Soccio, M.; Lotti, N.; Jehnichen, D.; Göbel, M.; Schick, C. Enthalpy of formation and disordering temperature of transient monotropic liquid crystals of poly(butylene 2,6-naphthalate). Polymer2018, 158, 77–82.CrossRefGoogle Scholar
- 67.Cheng, S. Z. Phase transitions in polymers: the role of metastable states. Elsevier, Amsterdam, 2008, p. 25.Google Scholar
- 68.Singh, S. Liquid crystals fundamentals. World Scientific, New Jersey, 2002, p. 58CrossRefGoogle Scholar
- 69.de Gennes, P. G.; Prost, J. The physics of liquid crystals. Oxford University Press, New York, 1993, p. 58Google Scholar
- 70.Sackmann, H.; Demus, D. The polymorphism of liquid crystals. Mol. Cryst.1966, 2, 81–102.CrossRefGoogle Scholar
- 71.Nehring, J.; Saupe, A. On the schlieren texture in nematic and smectic liquid crystals. J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys.1972, 68, 1–15.CrossRefGoogle Scholar
- 72.Demus, D. Schlieren textures in smectic liquid crystals. Kristall und Technik1975, 10, 933–946.CrossRefGoogle Scholar
- 73.Jakeways, R.; Ward, I. M.; Wilding, M. A.; Hall, I. H.; Desborough, I. J.; Pass, M. G. Crystal deformation in aromatic polyesters. J. Polym. Sci., Part B: Polym. Phys.1975, 13, 799–813.Google Scholar
- 74.Sun, Y. M.; Wang, C. S. Novel copolyesters containing naphthalene structure. I. From bis(hydroxyalkyl)naphthalate and bis[4-(2-hydroxyethoxy)aryl] compounds. J. Polym. Sci., Part A: Polym. Chem.1996, 34, 1783–1792.CrossRefGoogle Scholar
- 75.Zhuravlev, E.; Schmelzer, J. W.; Abyzov, A. S.; Fokin, V. M.; Androsch, R.; Schick, C. Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst. Growth Des.2015, 15, 786–798.CrossRefGoogle Scholar
- 76.Androsch, R.; Iqbal, H. N.; Schick, C. Non-isothermal crystal nucleation of poly(L-lactic acid). Polymer2015, 81, 151–158.CrossRefGoogle Scholar
- 77.Salmerón Sánchez, M.; Mathot, V. B.; Vanden Poel, G.; Gómez Ribelles, J. L. Effect of the cooling rate on the nucleation kinetics of poly(L-lactic acid) and its influence on morphology. Macromolecules2007, 40, 7989–7997.CrossRefGoogle Scholar
- 78.Papageorgiou, G. Z.; Tsanaktsis, V.; Bikiaris, D. N. Crystallization of poly(butylene-2,6-naphthalate-co-butylene adipate) copolymers: regulating crystal modification of the polymorphic parent homopolymers and biodegradation. Cryst. Eng. Commun. 2014, 16, 7963–7978.CrossRefGoogle Scholar
- 79.Ding; Q.; Soccio, M.; Lotti, N.; Mahmood, N.; Cavallo, D.; Androsch, R. Crystallization of poly(butylene 2,6-naphthalate) containing diethylene 2,6-naphthalate constitutional defects. Polym. Crys. 2019.Google Scholar