Probing Intermittent Motion of Polymer Chains in Weakly Attractive Nanocomposites
- 9 Downloads
Abstract
In this study, we investigate the motion of polymer segments in polymer/nanoparticle composites by varying nanoparticle (NP) volume fractions. By studying the probability distribution of segment displacement, segment trajectory, and the square displacement of segment, we find the intermittent motion of segments, accompanied with the coexistence of slow and fast segments in polymer nanocomposites (PNCs). The displacement distribution of segments exhibits an exponential tail, rather than a Gaussian form. The intermittent dynamics of chain segments is comprised of a long-range jump motion and a short-range localized motion, which is mediated by the weakly attractive interaction between NP and chain segment and the strong confinement induced by NPs. Meanwhile, the intermittent motion of chain segments can be described by the adsorption-desorption transition at low particle loading and confinement effect at high particle loading. These findings may provide important information for understanding the anomalous motion of polymer chains in the presence of NPs.
Keywords
Nanocomposites Intermittent dynamics The probability distribution of displacement Confinement Adsorption-desorption mechanismPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (Nos. 21790344, 21833008, 21774129), the National Key R&D Program of China (No. 2018YFB0703701), the Jilin Provincial science and technology development program (No. 20190101021JH), and the Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSWSLH027).
Supplementary material
References
- 1.Kumar, S. K.; Benicewicz, B. C.; Vaia, R. A.; Winey, K. I. 50th Anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules2017, 50, 714–731.CrossRefGoogle Scholar
- 2.Srivastava, S.; Schaefer, J. L.; Yang, Z.; Tu, Z.; Archer, L. A. 25th anniversary article: Polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv. Mater. 2014, 26, 201–234.PubMedCrossRefGoogle Scholar
- 3.Renna, L. A.; Boyle, C. J.; Gehan, T. S.; Venkataraman, D. Polymer nanoparticle assemblies: a versatile route to functional mesostructures. Macromolecules2015, 48, 6353–6368.CrossRefGoogle Scholar
- 4.Wang, M.; Duan, X.; Xu, Y.; Duan, X. Functional three-dimensional graphene/polymer composites. ACS Nano2016, 10, 7231–7247.PubMedCrossRefGoogle Scholar
- 5.Desai, T.; Keblinski, P.; Kumar, S. K. Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys.2005, 122, 134910.PubMedCrossRefGoogle Scholar
- 6.Smith, G. D.; Bedrov, D.; Li, L.; Byutner, O. A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J. Chem. Phys.2002, 117, 9478–9489.CrossRefGoogle Scholar
- 7.Liu, J.; Wu, Y.; Shen, J.; Gao, Y.; Zhang, L.; Cao, D. Polymernanoparticle interfacial behavior revisited: a molecular dynamics study. Phys. Chem. Chem. Phys.2011, 13, 13058–13069.PubMedCrossRefGoogle Scholar
- 8.Liu, J.; Wu, S.; Zhang, L.; Wang, W.; Cao, D. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement. Phys. Chem. Chem. Phys.2011, 13, 518–529.PubMedCrossRefGoogle Scholar
- 9.Smith, J. S.; Bedrov, D.; Smith, G. D. A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos. Sci. Technol.2003, 63, 1599–1605.CrossRefGoogle Scholar
- 10.Goswami, M.; Sumpter, B. G. Effect of polymer-filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites. J. Chem. Phys.2009, 130, 134910.PubMedCrossRefGoogle Scholar
- 11.Cheng, S.; Carroll, B.; Bocharova, V.; Carrillo, J. M.; Sumpter, B. G.; Sokolov, A. P. Focus: structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. J. Chem. Phys.2017, 146, 203201.PubMedCrossRefGoogle Scholar
- 12.Cheng, S.; Holt, A. P.; Wang, H.; Fan, F.; Bocharova, V.; Martin, H.; Etampawala, T.; White, B. T.; Saito, T.; Kang, N. G.; Dadmun, M. D.; Mays, J. W.; Sokolov, A. P. Unexpected molecular weight effect in polymer nanocomposites. Phys. Rev. Lett.2016, 116, 038302.PubMedCrossRefGoogle Scholar
- 13.Voylov, D. N.; Holt, A. P.; Doughty, B.; Bocharova, V.; Meyer III, H. M.; Cheng, S.; Martin, H.; Dadmun, M.; Kisliuk, A.; Sokolov, A. P. Unraveling the molecular weight dependence of interfacial interactions in poly(2-vinylpyridine)/silica nanocomposites. ACS Macro Lett.2017, 6, 68–72.CrossRefGoogle Scholar
- 14.Karatrantos, A.; Clarke, N.; Composto, R. J.; Winey, K. I. Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter2015, 11, 382–8.PubMedCrossRefGoogle Scholar
- 15.Kim, S. Y.; Meyer, H. W.; Saalwachter, K.; Zukoski, C. F. Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. Macromolecules2012, 45, 4225–4237.CrossRefGoogle Scholar
- 16.Kim, S. Y.; Zukoski, C. F. Molecular weight effects on particle and polymer microstructure in concentrated polymer solutions. Macromolecules2013, 46, 6634–6643.CrossRefGoogle Scholar
- 17.Hattemer, G. D.; Arya, G. Viscoelastic properties of polymergrafted nanoparticle composites from molecular dynamics simulations. Macromolecules2015, 48, 1240–1255.CrossRefGoogle Scholar
- 18.Einstein, A. Zur theorie der brownschen bewegung. Annalen der physik1906, 324, 371–381.CrossRefGoogle Scholar
- 19.Sentjabrskaja, T.; Zaccarelli, E.; de Michele, C.; Sciortino, F.; Tartaglia, P.; Voigtmann, T.; Egelhaaf, S. U.; Laurati, M. Anomalous dynamics of intruders in a crowded environment of mobile obstacles. Nat. Commun.2016, 7, 11133.PubMedPubMedCentralCrossRefGoogle Scholar
- 20.Wang, B.; Kuo, J.; Bae, S. C.; Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater.2012, 11, 481–485.PubMedCrossRefGoogle Scholar
- 21.Guan, J.; Wang, B.; Granick, S. Even hard-sphere colloidal suspensions display fickian yet non-Gaussian diffusion. ACS Nano2014, 8, 3331–3336.PubMedCrossRefGoogle Scholar
- 22.Hwang, J.; Kim, J.; Sung, B. J. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm. Phys. Rev. E2016, 94, 022614.PubMedCrossRefGoogle Scholar
- 23.Skaug, M. J.; Mabry, J.; Schwartz, D. K. Intermittent molecular hopping at the solid-liquid interface. Phys. Rev. Lett. 2013, 110, 256101.PubMedCrossRefGoogle Scholar
- 24.Saltzman, E. J.; Schweizer, K. S. Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids. Phys. Rev. E2008, 77, 051504.CrossRefGoogle Scholar
- 25.Chaudhuri, P.; Hurtado, P. I.; Berthier, L.; Kob, W. Relaxation dynamics in a transient network fluid with competing gel and glass phases. J. Chem. Phys.2015, 142, 174503.PubMedCrossRefGoogle Scholar
- 26.Kwon, G.; Sung, B. J.; Yethiraj, A. Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal? J. Phys. Chem. B2014, 118, 8128–8134.PubMedCrossRefGoogle Scholar
- 27.Xue, C.; Zheng, X.; Chen, K.; Tian, Y.; Hu, G. Probing non-Gaussianity in confined diffusion of nanoparticles. J. Phys. Chem. Lett.2016, 7, 514–519.PubMedCrossRefGoogle Scholar
- 28.Wang, B.; Anthony, S. M.; Bae, S. C.; Granick, S. Anomalous yet Brownian. Proc. Natl. Acad. Sci.2009, 106, 15160–15164.PubMedCrossRefGoogle Scholar
- 29.Volgin, I. V.; Larin, S. V.; Abad, E.; Lyulin, S. V. Molecular dynamics simulations of fullerene diffusion in polymer melts. Macromolecules2017, 50, 2207–2218.CrossRefGoogle Scholar
- 30.Desai, T. G.; Keblinski, P.; Kumar, S. K.; Granick, S. Modeling diffusion of adsorbed polymer with explicit solvent. Phys. Rev. Lett.2007, 98, 218301.PubMedCrossRefGoogle Scholar
- 31.Walder, R.; Nelson, N.; Schwartz, D. K. Single molecule observations of desorption-mediated diffusion at the solid-liquid interface. Phys. Rev. Lett.2011, 107, 156102.PubMedCrossRefGoogle Scholar
- 32.Mabry, J. N.; Schwartz, D. K. Tuning the flight length of molecules diffusing on a hydrophobic surface. J. Phys. Chem. Lett.2015, 6, 2065–9.PubMedCrossRefGoogle Scholar
- 33.Wang, D. P.; Chin, H. Y.; He, C. L.; Stoykovich, M. P.; Schwartz, D. K. Polymer surface transport is a combination of in-plane diffusion and desorption-mediated flights. ACS Macro Lett.2016, 5, 509–514.CrossRefGoogle Scholar
- 34.Chien, W.; Chen, Y. L. Abnormal polymer transport in crowded attractive micropost arrays. Soft Matter2016, 12, 7969–7976.PubMedCrossRefGoogle Scholar
- 35.Wang, D.; Hu, R.; Mabry, J. N.; Miao, B.; Wu, D. T.; Koynov, K.; Schwartz, D. K. Scaling of polymer dynamics at an oil-water interface in regimes dominated by viscous drag and desorption-mediated flights. J. Am. Chem. Soc.2015, 137, 12312–12320.PubMedCrossRefGoogle Scholar
- 36.Yu, C.; Guan, J.; Chen, K.; Bae, S. C.; Granick, S. Single-molecule observation of long jumps in polymer adsorption. ACS Nano2013, 7, 9735–9742.PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Bychuk, O. V.; O’Shaughnessy, B. Anomalous diffusion at liquid surfaces. Phys. Rev. Lett.1995, 74, 1795–1798.PubMedCrossRefPubMedCentralGoogle Scholar
- 38.Schunack, M.; Linderoth, T. R.; Rosei, F.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett.2002, 88, 156102.PubMedCrossRefPubMedCentralGoogle Scholar
- 39.Pryamitsyn, V.; Ganesan, V. Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules2006, 39, 844–856.CrossRefGoogle Scholar
- 40.Schneider, G. J.; Nusser, K.; Neueder, S.; Brodeck, M.; Willner, L.; Farago, B.; Holderer, O.; Briels, W. J.; Richter, D. Anomalous chain diffusion in unentangled model polymer nanocomposites. Soft Matter2013, 9, 4336–4348.CrossRefGoogle Scholar
- 41.Skaug, M. J.; Mabry, J. N.; Schwartz, D. K. Single-molecule tracking of polymer surface diffusion. J. Am. Chem. Soc.2014, 136, 1327–32.PubMedCrossRefGoogle Scholar
- 42.Dai, L. J.; Fu, C. L.; Zhu, Y. L.; Sun, Z. Y. Heterogeneous dynamics of unentangled chains in polymer nanocomposites. J. Chem. Phys. 2019, 150, 184903.PubMedCrossRefGoogle Scholar
- 43.Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.CrossRefGoogle Scholar
- 44.Hardin, R.; Sloane, N.; Smith, W. Tables of spherical codes with icosahedral symmetry. Published electronically at https://doi.org/www.research.att.com 2000.
- 45.Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem.2013, 34, 2197–2211.PubMedCrossRefGoogle Scholar
- 46.Li, Y.; Kroger, M.; Liu, W. K. Dynamic structure of unentangled polymer chains in the vicinity of non-attractive nanoparticles. Soft Matter2014, 10, 1723–37.PubMedCrossRefGoogle Scholar
- 47.Hansen, J. P.; McDonald, I. R. in Theory of simple liquids, Fourth Edition, Academic Press, Oxford, 2013, pp. 311–361.CrossRefGoogle Scholar
- 48.Colmenero, J.; Alvarez, F.; Arbe, A. Self-motion and the a relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior. Phys. Rev. E2002, 65, 041804.CrossRefGoogle Scholar
- 49.van der Meer, B.; Qi, W.; Sprakel, J.; Filion, L.; Dijkstra, M. Dynamical heterogeneities and defects in two-dimensional soft colloidal crystals. Soft Matter2015, 11, 9385–9392.PubMedCrossRefGoogle Scholar
- 50.Kim, J.; Kim, C.; Sung, B. J. Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids. Phys. Rev. Lett.2013, 110, 047801.PubMedCrossRefGoogle Scholar
- 51.Zangi, R.; Rice, S. A. Cooperative dynamics in two dimensions. Phys. Rev. Lett.2004, 92, 035502.PubMedCrossRefGoogle Scholar
- 52.Chaudhuri, P.; Berthier, L.; Kob, W. Universal nature of particle displacements close to glass and jamming transitions. Phys. Rev. Lett.2007, 99, 060604.PubMedCrossRefGoogle Scholar
- 53.Dibble, C. J.; Kogan, M.; Solomon, M. J. Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity. Phys. Rev. E2006, 74, 041403.CrossRefGoogle Scholar
- 54.Hurtado, P. I.; Berthier, L.; Kob, W. Heterogeneous diffusion in a reversible gel. Phys. Rev. Lett.2007, 98, 135503.PubMedCrossRefGoogle Scholar
- 55.Miyagawa, H.; Hiwatari, Y.; Bernu, B.; Hansen, J. Molecular dynamics study of binary soft-sphere mixtures: jump motions of atoms in the glassy state. J. Chem. Phys.1988, 88, 3879–3886.CrossRefGoogle Scholar
- 56.Babayekhorasani, F.; Dunstan, D. E.; Krishnamoorti, R.; Conrad, J. C. Nanoparticle diffusion in crowded and confined media. Soft Matter2016, 12, 8407–8416.PubMedCrossRefGoogle Scholar
- 57.Kob, W.; Donati, C.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett.1997, 79, 2827–2830.CrossRefGoogle Scholar
- 58.Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science2000, 287, 627–631.PubMedCrossRefGoogle Scholar
- 59.Wu, S. Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer1985, 26, 1855–1863.CrossRefGoogle Scholar
- 60.Gam, S.; Meth, J. S.; Zane, S. G.; Chi, C. Z.; Wood, B. A.; Seitz, M. E.; Winey, K. I.; Clarke, N.; Composto, R. J. Macromolecular diffusion in a crowded polymer nanocomposite. Macromolecules2011, 44, 3494–3501.CrossRefGoogle Scholar