Fast Computation of Electrostatic Interactions for a Charged Polymer with Applied Field

  • Hao Lin
  • Zi-Tong Lei
  • Ming-Ming DingEmail author
  • Hong-Jun WangEmail author
  • Tong-Fei ShiEmail author


Using a hybrid simulation approach that combines a finite difference method with a Brownian dynamics, we investigated the motion of charged polymers. Owing to the fact that polymer-solution systems often contain a large number of particles and the charged polymer chains are in a state of random motion, it is a time-consuming task to calculate the electrostatic interaction of the system. Accordingly, we propose a new strategy to shorten the CPU time by reducing the iteration area. Our simulation results illustrate the effect of preset parameters on CPU time and accuracy, and demonstrate the feasibility of the “local iteration” method. Importantly, we find that the increase in the number of charged beads has no significant influence on the time of global iterations and local iterations. For a number of 80 × 80 × 80 grids, when the relative error is controlled below 1.5%, the computational efficiency is increased by 8.7 times in the case that contains 500 charged beads. In addition, for a number of 100 × 100 × 100 grids with 100 charged beads, the computational efficiency can be increased up to 12 times. Our work provides new insights for the optimization of iterative algorithms in special problems.


Finite difference method Brownian dynamics Charged polymers Electrostatic interaction Local iteration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21604086), Jilin Provincial science and technology development program (No. 20190103124JH), and Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSW-SLH027).


  1. 1.
    Ermak, D. L.; McCammon, J. A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69, 1352–1360.CrossRefGoogle Scholar
  2. 2.
    Northrup, S. H.; Alison, S. A.; McCammon, J. A. Brownian dynamics simulation of diffusion-influenced bimolecular reactions. J. Chem. Phys. 1984, 80, 1517–1526.CrossRefGoogle Scholar
  3. 3.
    Zhou, H. X. On the calculation of diffusive reaction-rates using brownian dynamics simulations. J. Chem. Phys. 1990, 92, 3092–3095.CrossRefGoogle Scholar
  4. 4.
    Luty, B. A.; McCammon, J. A.; Zhou, H. X. Diffusive reaction-rates from brownian dynamics simulations-replacing the outoff surface by an analytical treatment. J. Chem. Phys. 1992, 97, 5682–5686.CrossRefGoogle Scholar
  5. 5.
    Bauler, P.; Huber, G.; Leyh, T.; McCammon, J. A. Channeling by proximity: The catalytic advantages of active site colocalization using brownian dynamics. J. Phys. Chem. Lett. 2010, 1, 1332–1335.CrossRefGoogle Scholar
  6. 6.
    McGuffee, S, R,; Elcock, A. H. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 2010, 6, 1000694.CrossRefGoogle Scholar
  7. 7.
    Toukmaji, A. Y.; Board, J. A. Jr. Ewald summation techniques in perspective: A survey. Comput. Phys. Common. 1996, 95, 73–92.CrossRefGoogle Scholar
  8. 8.
    Deserno, M.; Holm, C. How to mesh up Ewald sums. II. An accurate error estimate for the particleparticleparticle-mesh algorithm. J. Chem. Phys. 1998, 109, 7694–7701.Google Scholar
  9. 9.
    Zhou, S.; Sun, H.; Cheng, L. T.; Dzubiella, J.; Li, B.; Mccammon, J. A. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations. J. Chem. Phys. 2016, 145, 054114.CrossRefGoogle Scholar
  10. 10.
    Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.CrossRefGoogle Scholar
  11. 11.
    Ballenegger, V.; Cerda, J. J.; Holm, C. How to convent SPME to P3M: Influence functions and error estimates. J. Chem. Theory Comput. 2012, 8, 936–947.CrossRefGoogle Scholar
  12. 12.
    Antia, H. M. Numerical methods for scientists and engineers. Vol. 2. Springer, 2012.Google Scholar
  13. 13.
    Huber, G. A.; Miao, Y.; Zhou, S.; Li, B.; McCammon, J. A. Hybrid finite element and Brownian dynamics method for charged particles. J. Chem. Phys. 2016, 144, 164107.CrossRefGoogle Scholar
  14. 14.
    Smith, G. D. Numerical solution of partial differential equations. Oxford University Press, 1985.Google Scholar
  15. 15.
    Kamboh, S. A.; Labadin, J.; Rigit, A. R. H. Computational modeling and simulation of EHD ion-drag pumping using finite difference method. Simul. Mater. Sci. Eng. 2013 207–211.Google Scholar
  16. 16.
    Spotz, W. F.; Carey, G. F. A high-order compact formulation for the 3D Poisson equation. Numer. Meth. Part. D. E. 2015, 12, 235–243.CrossRefGoogle Scholar
  17. 17.
    Gupta, M.; Kouatchou, J. Symbolic derivation of finite difference approximations for the three-dimensional Poisson equation. Numer. Meth. Part. D. E. 1998, 14, 593–606.CrossRefGoogle Scholar
  18. 18.
    Wang, J.; Zhong, W.; Zhang, J. A general mesh size fourth-order compact difference discretization scheme for 3D Poission equation. Appl. Math. Comput. 2006, 183, 804–812.Google Scholar
  19. 19.
    Wang, H.; Zhang, Y.; Ma, X.; Qiu, J.; Liang, Y. An efficient implementation of fourth-order compact finite difference scheme for Poisson equation with Dirichlet boundary conditions. Appl. Math. Comput. 2016, 71, 1843–1860.CrossRefGoogle Scholar
  20. 20.
    Tritsiklis, J. N. A comparison of Jacobi and Gauss-Seidel parallel iterations. Appl. Math. Lett. 1998, 2, 167–170.CrossRefGoogle Scholar
  21. 21.
    Kamboth, S. A.; Labadin, J.; Rigit, A. R. H. Computational time analysis of the numerical solution of 3D electrostatic Poission’s equation. International Conference on Mathematics, Engineering and Industrial Applications (ICoMEIA). 2015.Google Scholar
  22. 22.
    Fukuchi, T. Finite difference method and algebraic polynomial interpolation for numerically solving Poission’s equation over arbitrary domains. AIP Adv. 2014, 4, 060701.CrossRefGoogle Scholar
  23. 23.
    Jozwikowska, A. Numerical solution of the nonlinear Poisson equation for semiconductor devices by application of a diffusionequation finite difference scheme. J. Appl. Phys. 2008, 104, 63715.CrossRefGoogle Scholar
  24. 24.
    Yang, X. I. A.; Mittal, R. Acceleration of the Jacobi iterative method by factors exceeding 100 using scheduled relaxation. J. Comput. Phys. 2014, 274, 695–708.CrossRefGoogle Scholar
  25. 25.
    Adsuara, J. E.; Cordero-Carrion, I.; Cerda-Duran, P.; Aloy, M. A. Scheduled relaxation Jacobi method: Improvements and applications. J. Comput. Phys. 2016, 321, 369–413.CrossRefGoogle Scholar
  26. 26.
    Richardson, L. F. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. R. Soc. London Ser. 1911, 201, 307–357.CrossRefGoogle Scholar
  27. 27.
    Young, D. Iterative methods for solving partial difference equations of elliptic type. T. Am. Math. Soc. 1954, 76, 92–111.CrossRefGoogle Scholar
  28. 28.
    Schultz, M. Analysis of numerical methods. Dover Publications, 1994.Google Scholar
  29. 29.
    Juncosa, M. L.; Mulikin, T. W. On the increase of convergence rates of relaxation procedures for elliptic partial difference equations. JACM 1960, 7, 29–36.CrossRefGoogle Scholar
  30. 30.
    Adsuara, J. E.; Cordero-Carrion, I.; Cerda-Duran, P.; Mewes, V.; Aloy, M. A. On the equivalence between the Scheduled Relaxation Jacobi method and Richardson’s non-stationary method. J. Comput. Phys. 2017, 332, 446–460.CrossRefGoogle Scholar
  31. 31.
    Pratapa, P. P.; Suryanarayana, P.; Pask, J. E. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems. J. Comput. Phys. 2016, 306, 43–54.CrossRefGoogle Scholar
  32. 32.
    Ge, Y. Multigrid method and fourth-order compact difference discretization scheme with unequal meshsizes for 3D Poisson equation. J. Comput. Phys. 2010, 229, 6381–6391.CrossRefGoogle Scholar
  33. 33.
    Dai, R.; Lin, P.; Zhang, J. An EXCMG accelerated multiscale multigrid computation for 3D Poisson equation. Comput. Math. Appl. 2019, 77, 2051–2060.CrossRefGoogle Scholar
  34. 34.
    Sutmann, G.; Steffen, B. High-order compact solvers for the threedimensional Poisson equation. J. Comput. Appl. Math. 2006, 187, 142–170.CrossRefGoogle Scholar
  35. 35.
    Kouatchou, J.; Zhang, J. Optimal injection operator and high order schemes for multigrid solution of 3D Poisson equation. Int. J. Comput. Math 2000, 76, 173–190.CrossRefGoogle Scholar
  36. 36.
    Zhang, J. Fast and high accuracy multigrid solution of the three dimensional Poisson equation. J. Comput. Phys. 1998, 143, 449–461.CrossRefGoogle Scholar
  37. 37.
    Frenkel, D.; Smit, B. Understanding molecular simulation. Academic Press, New York, 2002.Google Scholar
  38. 38.
    Allen, M.; Tildesley, D. Computer simulation of molecular liquids. Clarendon Press, Oxford, 1981.Google Scholar
  39. 39.
    Maitland, G. C. Intermolecular forces: Their origin and determination. Oxford University Press, Oxford, 1981.Google Scholar
  40. 40.
    Warner, Harold R. Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Industrial and Engineering Chemistry, Fundamentals 1972, 11, 379–387.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsJilin Normal UniversityChangchunChina
  2. 2.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.College of ComputerJilin Normal UniversitySipingChina
  4. 4.School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations