Polyester-supported Chitosan-Poly(vinylidene fluoride)-Inorganic-Oxide-Nanoparticles Composites with Improved Flame Retardancy and Thermal Stability

  • Ahmed Abed
  • Nabil BouaziziEmail author
  • Stéphane Giraud
  • Ahmida El Achari
  • Christine Campagne
  • Olivier Thoumire
  • Reddad El Moznine
  • Omar Cherkaoui
  • Julien Vieillard
  • Abdelkrim Azzouz


Polyester (PET) was pre-activated by atmospheric air plasma and coated by various inorganic oxide nanoparticles (MOx) such as titanium dioxide (TiO2), zinc oxide (ZnO), and silicon oxide (SiO2), using poly(vinylidene fluoride) (PVDF) and chitosan (CT) as binders. The resulting PET-PVDF-MOx-CT composites were thermally compressed and then characterized by scanning electron microscopy, Fourier infrared spectroscopy, thermal gravimetric analysis, and flame retardancy (FR) ability tests. PET modifications resulted in more thermally stable and less harmful composites with weaker hazardous gas release. This was explained in terms of structure compaction that blocks pyrolysis gas emissions. CT incorporation was found to reduce the material susceptibility to oxidation. This judicious procedure also allowed improving flame retardancy ability, by lengthening the combustion delay and slowing the flame propagation. Chitosan also turned out to contribute to a possible synergy with the other polymers present in the synthesized materials. These results provide valuable data that allow understanding the FR phenomena and envisaging low-cost high FR materials from biodegradable raw materials.


Polyester nonwovens Composite PVDF Flame retardancy Material oxides Chitosan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the GEMTEX Laboratory-France. We are grateful to Christian Catel, from ENSAIT, Roubaix, France for support through plasma treatment.

Supplementary material

10118_2020_2336_MOESM1_ESM.pdf (451 kb)
Polyester-supported Chitosan-Poly(vinylidene fluoride)-Inorganic-Oxide-Nanoparticles Composites with Improved Flame Retardancy and Thermal Stability


  1. 1.
    Overholt, K. J.; Gollner, M. J.; Perricone, J.; Rangwala, A. S.; Williams, F. A. Warehouse commodity classification from fundamental principles. Part II: Flame heights and flame spread. Fire Safety J.2011, 46, 317–329.CrossRefGoogle Scholar
  2. 2.
    Lee, S. J.; Kim, S. H.; Won, J. P. Strength and fire resistance of a high-strength nano-polymer modified cementitious composite. Compos. Struct.2017, 173, 96–105.CrossRefGoogle Scholar
  3. 3.
    Abidi, N.; Cabrales, L.; Hequet, E. Functionalization of a cotton fabric surface with titania nanosols: Applications for self-cleaning and UV-protection properties. ACS Appl. Mater. Interfaces2009, 1, 2141–2146.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Emam, H. E.; Abdelhameed, R. M. Anti-UV radiation textiles designed by embracing with nano-MIL (Ti, In)–metal organic framework. ACS Appl. Mater. Interfaces2017, 9, 28034–28045.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Costa, F. R.; Saphiannikova, M.; Wagenknecht, U.; Heinrich, G. Layered double hydroxide based polymer nanocomposites. In Wax crystal control: Nanocomposites, stimuli-responsive polymers. Springer, 2007, pp. 101–168.CrossRefGoogle Scholar
  6. 6.
    Han, Y.; Wu, Y.; Shen, M.; Huang, X.; Zhu, J.; Zhang, X. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J. Mater. Sci.2013, 48, 4214–4222.CrossRefGoogle Scholar
  7. 7.
    Costa, F. R.; Wagenknecht, U.; Heinrich, G. LDPE/Mg-Al layered double hydroxide nanocomposite: Thermal and flammability properties. Polym. Degrad. Stab.2007, 92, 1813–1823.CrossRefGoogle Scholar
  8. 8.
    Plentz, R. S.; Miotto, M.; Schneider, E. E.; Forte, M. M. C.; Mauler, R. S.; Nachtigall, S. M. B. Effect of a macromolecular coupling agent on the properties of aluminum hydroxide/PP composites. J. Appl. Polym. Sci.2006, 101, 1799–1805.CrossRefGoogle Scholar
  9. 9.
    Xie, Y.; Hill, C. A. S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A: Appl. Sci. Manuf.2010, 41, 806–819.CrossRefGoogle Scholar
  10. 10.
    Bouazizi, N.; Ajala, F.; Bettaibi, A.; Khelil, M.; Benghnia, A.; Bargougui, R.; Louhichi, S.; Labiadh, L.; Slama, R. B.; Chaouachi, B. Metal-organo-zinc oxide materials: Investigation on the structural, optical and electrical properties. J. Alloys Compd.2016, 656, 146–153.CrossRefGoogle Scholar
  11. 11.
    Bouazizi, N.; Khelil, M.; Ajala, F.; Boudharaa, T.; Benghnia, A.; Lachheb, H.; Slama, R. B.; Chaouachi, B.; M’Nif, A.; Azzouz, A. Molybdenum-loaded 1,5-diaminonaphthalene/ZnO materials with improved electrical properties and affinity towards hydrogen at ambient conditions. Int. J. Hydro. Energy2016, 41, 11232–11241.CrossRefGoogle Scholar
  12. 12.
    Deb, H.; Morshed, M. N.; Xiao, S.; Al Azad, S.; Cai, Z.; Ahmed, A. Design and development of TiO2-Fe0 nanoparticle-immobilized nanofibrous mat for photocatalytic degradation of hazardous water pollutants. J. Mater. Sci. Mater. Electron.2019, 30, 4842–4854.CrossRefGoogle Scholar
  13. 13.
    Deb, H.; Xiao, S.; Morshed, M. N.; Al Azad, S. Immobilization of cationic titanium dioxide (TiO2 +) on electrospun nanofibrous mat: Synthesis, characterization, and potential environmental application. Fibers Polym.2018, 19, 1715–1725.CrossRefGoogle Scholar
  14. 14.
    Hou, X.; Ren, P.; Rong, Q.; Zheng, W.; Zhan, Y. Effect of fire insulation on fire resistance of hybrid-fiber reinforced reactive powder concrete beams. Compos. Struct.2019, 209, 219–232.CrossRefGoogle Scholar
  15. 15.
    Wei, Y. X.; Deng, C.; Zhao, Z. Y.; Wang, Y. Z. A novel organicinorganic hybrid SiO2@DPP for the fire retardance of polycarbonate. Polym. Degrad. Stab.2018, 154, 177–185.CrossRefGoogle Scholar
  16. 16.
    Wang, D.; Song, L.; Zhou, K.; Yu, X.; Hu, Y.; Wang, J. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A2015, 3, 14307–14317.CrossRefGoogle Scholar
  17. 17.
    Morshed, M. N.; Shen, X.; Deb, H.; Azad, S. A.; Zhang, X.; Li, R. Sonochemical fabrication of nanocryatalline titanium dioxide (TiO2) in cotton fiber for durable ultraviolet resistance. J. Nat. Fibers2018, 1–14.Google Scholar
  18. 18.
    Jiang, S. D.; Bai, Z. M.; Tang, G.; Song, L.; Stec, A. A.; Hull, T. R.; Hu, Y.; Hu, W. Z. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: Layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl. Mater. Interfaces2014, 6, 14076–14086.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Papageorgiou, D. G.; Terzopoulou, Z.; Fina, A.; Cuttica, F.; Papageorgiou, G. Z.; Bikiaris, D. N.; Chrissafis, K.; Young, R. J.; Kinloch, I. A. Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Compos. Sci. Technol.2018, 156, 95–102.CrossRefGoogle Scholar
  20. 20.
    Yao, K.; Gong, J.; Zheng, J.; Wang, L.; Tan, H.; Zhang, G.; Lin, Y.; Na, H.; Chen, X.; Wen, X. Catalytic carbonization of chlorinated poly(vinyl chloride) microfibers into carbon microfibers with high performance in the photodegradation of Congo Red. J. Phys. Chem. C2013, 117, 17016–17023.CrossRefGoogle Scholar
  21. 21.
    Ferrreira, A.; Rocha, J. G.; Ansón-Casaos, A.; Martínez, M. T.; Vaz, F.; Lanceros-Mendez, S. Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sensors Actuators A2012, 178, 10–16.CrossRefGoogle Scholar
  22. 22.
    Parangusan, H.; Ponnamma, D.; AlMaadeed, M. A. A. Flexible trilayer piezoelectric nanogenerator based on PVDF-HFP/Ni-doped ZnO nanocomposites. RSC Adv.2017, 7, 50156–50165.CrossRefGoogle Scholar
  23. 23.
    Guan, X.; Zhang, Y.; Li, H.; Ou, J. PZT/PVDF composites doped with carbon nanotubes. Sensors Actuators A2013, 194, 228–231.CrossRefGoogle Scholar
  24. 24.
    Huang, P.; Cao, M.; Liu, Q. Adsorption of chitosan on chalcopyrite and galena from aqueous suspensions. Colloid. Surf. A2012, 409, 167–175.CrossRefGoogle Scholar
  25. 25.
    Liu, Y.; Wang, Q. Q.; Jiang, Z. M.; Zhang, C. J.; Li, Z. F.; Chen, H. Q.; Zhu, P. Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J. Analyt. Appl. Pyrolysis2018, 135, 289–298.CrossRefGoogle Scholar
  26. 26.
    Li, J.; Gong, Y.; Zhao, N.; Zhang, X. Preparation of N-butyl chitosan and study of its physical and biological properties. J. Appl. Polym. Sci.2005, 98, 1016–1024.CrossRefGoogle Scholar
  27. 27.
    Arshad, N.; Zia, K. M.; Jabeen, F.; Anjum, M. N.; Akram, N.; Zuber, M. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. Int. J. Bio. Macromol.2018, 111, 485–492.CrossRefGoogle Scholar
  28. 28.
    Morshed, M. N.; Bouazizi, N.; Behary, N.; Vieillard, J.; Thoumire, O.; Azzouz, A. Iron-loaded amine/thiol functionalized polyester fibers with high catalytic activities: Comparative study. Dalton Trans.2019.Google Scholar
  29. 29.
    Nabil, B.; Morshed, M. N.; Nemeshwaree, B.; Christine, C.; Julien, V.; Olivier, T.; Abdelkrim, A. Development of new multifunctional filter based nonwovens for organics pollutants reduction and detoxification: High catalytic and antibacterial activities. Chem. Eng. J.2019, 356, 702–716.CrossRefGoogle Scholar
  30. 30.
    Yasin, S.; Behary, N.; Giraud, S.; Perwuelz, A. In situ degradation of organophosphorus flame retardant on cellulosic fabric using advanced oxidation process: A study on degradation and characterization. Polym. Degrad. Stab.2016, 126, 1–8.CrossRefGoogle Scholar
  31. 31.
    Ramesan, M. T.; Siji, C.; Kalaprasad, G.; Bahuleyan, B. K.; Al-Maghrabi, M. A. Effect of silver doped zinc oxide as nanofiller for the development of biopolymer nanocomposites from chitin and cashew gum. J. Polym. Environ.2018, 26, 2983–2991.CrossRefGoogle Scholar
  32. 32.
    Bachan, N.; Asha, A.; Jeyarani, W. J.; Kumar, D. A.; Shyla, J. M. A comparative investigation on the structural, optical and electrical properties of SiO2-Fe3O4 core-shell nanostructures with their single components. Acta Metallurgica Sinica (English Letters)2015, 28, 1317–1325.CrossRefGoogle Scholar
  33. 33.
    Ali, F.; Khan, S. B.; Kamal, T.; Alamry, K. A.; Bakhsh, E. M.; Asiri, A. M.; Sobahi, T. R. A. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr. Polym.2018, 192, 217–230.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ganesan, S.; Muthuraaman, B.; Mathew, V.; Vadivel, M. K.; Maruthamuthu, P.; Ashokkumar, M.; Suthanthiraraj, S. A. Influence of 2,6(N-pyrazolyl) isonicotinic acid on the photovoltaic properties of a dye-sensitized solar cell fabricated using poly(vinylidene fluoride) blended with poly(ethylene oxide) polymer electrolyte. Electrochim. Acta2011, 56, 8811–8817.CrossRefGoogle Scholar
  35. 35.
    Tripathi, A. K.; Singh, M. K.; Mathpal, M. C.; Mishra, S. K.; Agarwal, A. Study of structural transformation in TiO2 nanoparticles and its optical properties. J. Alloys Compd.2013, 549, 114–120.CrossRefGoogle Scholar
  36. 36.
    Zhou, Q.; Lei, X. P.; Li, J. H.; Yan, B. F.; Zhang, Q. Q. Antifouling, adsorption and reversible flux properties of zwitterionic grafted PVDF membrane prepared via physisorbed free radical polymerization. Desalination2014, 337, 6–15.CrossRefGoogle Scholar
  37. 37.
    Coates, J. Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: Applications, theory and instrumentation2006.Google Scholar
  38. 38.
    Zhang, L. Y.; Zhu, X. J.; Sun, H. W.; Chi, G. R.; Xu, J. X.; Sun, Y. L. Control synthesis of magnetic Fe3O4-chitosan nanoparticles under UV irradiation in aqueous system. Curr. Appl. Phys.2010, 10, 828–833.CrossRefGoogle Scholar
  39. 39.
    Ma, W.; Ya, F. Q.; Han, M.; Wang, R. Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. J. Hazard. Mater.2007, 143, 296–302.PubMedCrossRefGoogle Scholar
  40. 40.
    Han, Z.; Dong, L.; Li, Y.; Zhao, H. A comparative study on the synergistic effect of expandable graphite with APP and IFR in polyethylene. J. Fire Sci.2007, 25, 79–91.CrossRefGoogle Scholar
  41. 41.
    Dhineshbabu, N. R.; Arunmetha, S.; Manivasakan, P.; Karunakaran, G.; Rajendran, V. Enhanced functional properties of cotton fabrics using TiO2/SiO2 nanocomposites. J. Indus. Textiles2016, 45, 674–692.CrossRefGoogle Scholar
  42. 42.
    Emam, H. E.; Manian, A. P.; Široká, B.; Duelli, H.; Merschak, P.; Redl, B.; Bechtold, T. Copper(I) oxide surface modified cellulose fibers—Synthesis, characterization and antimicrobial properties. Surf. Coatings Technol.2014, 254, 344–351.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed Abed
    • 1
    • 2
    • 3
  • Nabil Bouazizi
    • 1
    Email author
  • Stéphane Giraud
    • 1
  • Ahmida El Achari
    • 1
  • Christine Campagne
    • 1
  • Olivier Thoumire
    • 4
  • Reddad El Moznine
    • 2
  • Omar Cherkaoui
    • 3
  • Julien Vieillard
    • 5
  • Abdelkrim Azzouz
    • 6
  1. 1.ENSAIT, GEMTEX – Laboratoire de Génie et Matériaux TextilesLilleFrance
  2. 2.Laboratory LPMC, Faculty of Science El JadidaChouaib Doukkali UniversityEl JadidaMorocco
  3. 3.Laboratory REMTEXESITHCasablancaMorocco
  4. 4.Normandie Univ., UNIROUEN, CNRS, PBS (UMR 6270)EvreuxFrance
  5. 5.Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014)EvreuxFrance
  6. 6.Nanoqam, Department of ChemistryUniversity of Quebec at MontrealMontrealCanada

Personalised recommendations