Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 10, pp 1039–1044 | Cite as

Rheological and Interfacial Properties of Colloidal Electrolytes

  • Hong-Peng Han
  • Yi-Hu SongEmail author
  • Qiang ZhengEmail author
Article
  • 18 Downloads

Abstract

Electric conductivity and rheological responses of colloidal electrolytes consisting of lithium bis(trifluoromethanesulfon) imide, polyethylene glycol (PEG) oligomer, and fumed silica have been investigated. Incorporating silica could improve ionic conductivity of the electrolytes at the same lithium/oxygen ratios. The colloidal electrolytes demonstrate a sol to gel transition with increasing silica content while they exhibit shear thickening behaviors during steady flow at intermediate range of strain rate. The presence of lithium salt, on the one hand, could lower the crystallinity of PEG or forbid the crystallization and on the other hand, interferes the chain adsorption on the surface of silica. Furthermore, lithium salt strongly retards the segmental relaxation of PEG in the colloidal electrolytes.

Keywords

Colloidal electrolytes Rheology Silica Lithium salt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873190, 51573157, and 51790503).

Supplementary material

10118_2019_2334_MOESM1_ESM.pdf (306 kb)
Supplementary material, approximately 228 KB.

References

  1. 1.
    Feuillade, G.; Perche, P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 1975, 5, 63–69.CrossRefGoogle Scholar
  2. 2.
    Baskoro, F.; Wong, H. Q.; Yen, H. J. Strategic structural design of a gel polymer electrolyte toward a high efficiency lithiumion battery. ACS Appl. Energy Mater. 2019, 2, 3937–3971.CrossRefGoogle Scholar
  3. 3.
    Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.CrossRefGoogle Scholar
  4. 4.
    Huang, P. F.; Wang, Q. S.; Li, K.; Ping, P.; Sun, J. H. The combustion behavior of large scale lithium titanate battery. Sci. Rep. 2015, 5, 7788–7799.CrossRefGoogle Scholar
  5. 5.
    Lyu, Y. F.; Zhang, Z. J.; Liu, C.; Geng, Z.; Gao, L. C.; Chen, Q. Random binary brush architecture enhances both ionic conductivity and mechanical strength at room temperature. Chinese J. Polym. Sci. 2018, 36, 78–84.CrossRefGoogle Scholar
  6. 6.
    Santhosha, A. L.; Bhattacharyya, A. J. A few case studies on the correlation of particle network and its stability on the ionic conductivity of solid-liquid composite electrolytes. J. Phys. Chem. B 2015, 119, 11317–11325.CrossRefGoogle Scholar
  7. 7.
    Pfaffenhuber, C.; Göbel, M.; Popovic, J.; Maier, J. Soggy-sand electrolytes: Status and perspectives. Phys. Chem. Chem. Phys. 2013, 15, 18318–18335.CrossRefGoogle Scholar
  8. 8.
    Song, J. Y.; Wang, Y. Y.; Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 1999, 77, 183–197.CrossRefGoogle Scholar
  9. 9.
    Lee, Y. S.; Lee, J. H.; Choi, J. A.; Yoon, W. Y.; Kim, D. W. Composite polymer electrolytes: Cycling characteristics of lithium powder polymer batteries assembled with composite gel polymer electrolytes and lithium powder anode. Adv. Funct. Mater. 2013, 23, 917–917.CrossRefGoogle Scholar
  10. 10.
    Fan, J.; Raghavan, S. R.; Yu, X. Y.; Khan, S. A.; Fedkiw, P. S.; Hou, J.; Baker, G. L. Composite polymer electrolytes using surface- modified fumed silicas: Conductivity and rheology. Solid State Ionics 1998, 111, 117–123.CrossRefGoogle Scholar
  11. 11.
    Khan, S. A.; Fedkiw, P. S.; Baker, G. L. Composite polymer electrolytes using fumed silica fillers: Synthesis, rheology and electrochemistry. Office Sci. Tech. Inform. Tech. Rep. 1999, 1, 82–95.Google Scholar
  12. 12.
    Raghavan, S. R.; Riley, M. W.; Fedkiw, P. S.; Khan, S. A. Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: Dynamic rheology and microstructure. Chem. Mater. 1998, 10, 244–251.CrossRefGoogle Scholar
  13. 13.
    Fan, J.; Fedkiw, P. S. Composite electrolytes prepared from fumed silica, polyethylene oxide oligomers, and lithium salk. J. Electrochem. Soc. 1997, 144, 399–408.CrossRefGoogle Scholar
  14. 14.
    Walls, H. J.; Zhou, J.; Yerian, J. A.; Fedkiw, P. S.; Khan, S. A.; Stowe, M. K.; Baker, G. L. Fumed silica-based composite polymer electrolytes: Synthesis, rheology, and electrochemistry. J. Power Sources 2000, 89, 156–162.CrossRefGoogle Scholar
  15. 15.
    Li, Y. X.; Fedkiw, P. S.; Khan, S. A. Lithium/V6O13 cells using silica nanoparticle-based composite electrolyte. Electrochim. Acta 2002, 47, 3853–3861.CrossRefGoogle Scholar
  16. 16.
    Liu, K. W.; Cheng, C. F.; Zhou, L. Y.; Zou, F.; Liang, W. F.; Wang, M. Y.; Wang, M. Y.; Zhu, Y. A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries. J. Power Sources 2019, 423, 297–304.CrossRefGoogle Scholar
  17. 17.
    Ye, Y. L.; Xiao, H.; Reaves, K.; McCulloch, B.; Mike, J. F.; Lutkenhaus, J. L. Effect of nanorod aspect ratio on shear thickening electrolytes for safety-enhanced batteries. ACS Appl. Nano Mater. 2018, 1, 2774–2784.CrossRefGoogle Scholar
  18. 18.
    Shen, B. H.; Armstrong, B. L.; Doucet, M.; Heroux, L.; Browning, J. F.; Agamalian, M.; Tenhaeff, W. E.; Veith, G. M. Shear thickening electrolyte built from sterically stabilized colloidal particles. ACS Appl. Mater. Interfaces 2018, 10, 9424–9434.CrossRefGoogle Scholar
  19. 19.
    Veith, G. M.; Armstrong, B. L.; Wang, H.; Kalnaus, S.; Tenhaeff, W. E.; Patterson, M. L. Shear thickening electrolytes for high impact resistant batteries. ACS Energy Lett. 2017, 2, 2084–2088.CrossRefGoogle Scholar
  20. 20.
    Ding, J.; Tian, T. F.; Meng, Q.; Guo, Z. P.; Li, W. H.; Zhang, P.; Ciacchi, F. T.; Huang, J.; Yang, W. R. Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection. Sci. Rep. 2013, 3, 2485.CrossRefGoogle Scholar
  21. 21.
    Pfaffenhuber, C.; Sörgel, S.; Weichert, K.; Bele, M.; Mundinger, T.; Gobel, M.; Maier, J. In situ recording of particle network formation in liquids by ion conductivity measurements. J. Am. Chem. Soc. 2011, 133, 14514–14517.CrossRefGoogle Scholar
  22. 22.
    Vélez, J. F.; Aparicio, M.; Mosa, J. Effect of lithium salt in nanostructured silica-polyethylene glycol solid electrolytes for Li-ion battery applications. J. Phys. Chem. C 2016, 120, 22852–22864.CrossRefGoogle Scholar
  23. 23.
    Jarosik, A.; Traub, U.; Maier, J.; Bunde, A. Ion conducting particle networks in liquids: Modeling of network percolation and stability. Phys. Chem. Chem. Phys. 2011, 13, 2663–2666.CrossRefGoogle Scholar
  24. 24.
    Das, S. K.; Bhattacharyya, A. J. Oxide particle surface chemistry and ion transport in “soggy sand” electrolytes. J. Phys. Chem. C 2009, 113, 6699–6705.CrossRefGoogle Scholar
  25. 25.
    Zhou, H.; Fedkiw, P. S. Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides. Solid State Ionics 2004, 166, 275–293.CrossRefGoogle Scholar
  26. 26.
    Bhattacharyya, A. J.; Maier, J.; Bock, R.; Lange, F. F. New class of soft matter electrolytes obtained via heterogeneous doping: Percolation effects in “soggy sand” electrolytes. Solid State Ionics 2004, 177, 2565–2568.CrossRefGoogle Scholar
  27. 27.
    Bhattacharyya, A. J.; Maier, J. Second phase effects on the conductivity of non-aqueous salt solutions: “Soggy sand electrolytes”. Adv. Mater. 2004, 16, 811–814.CrossRefGoogle Scholar
  28. 28.
    Kumar, B.; Rodrigues, S. J. Ionic conductivity of colloidal electrolytes. Solid State Ionics 2004, 167, 91–97.CrossRefGoogle Scholar
  29. 29.
    Zhang, Q. X.; Wu, C.; Song, H.; Zheng, Q. Rheology of fumed silica/polypropylene glycol dispersions. Polymer 2018, 148, 400–406.CrossRefGoogle Scholar
  30. 30.
    Zheng, Z.; Song, Y.; Yang, R.; Zheng, Q. Direct evidence for percolation of immobilized polymer layer around nanoparticles accounting for sol-gel transition in fumed silica dispersions. Langmuir 2015, 31, 13478–13487.CrossRefGoogle Scholar
  31. 31.
    Zheng, Z.; Song, Y.; Xu, H.; Zheng Q. Thickening of the immobilized polymer layer using trace amount of amine and its role in promoting gelation of colloidal nanocomposites. Macromolecules 2015, 48, 9015–9023.CrossRefGoogle Scholar
  32. 32.
    Ma, T.; Yang, R.; Zheng, Z.; Song, Y. Rheology of fumed silica/polydimethylsiloxane suspensions. J. Rheol. 2017, 61, 205–215.CrossRefGoogle Scholar
  33. 33.
    Ma, F.; Xu, B.; Song, Y.; Zheng, Q. Influence of molecular weight on molecular dynamics and dynamic rheology of polypropylene glycol filled with silica. RSC Adv. 2018, 8, 31972–31978.CrossRefGoogle Scholar
  34. 34.
    Mathias, J.; Wannemacher, G. Basic characteristics and applications of aerosil: 30. The chemistry and physics of the aerosil surface. J. Colloid Interf. Sci. 1988, 125, 61–68.CrossRefGoogle Scholar
  35. 35.
    Raghavan, S. R.; Walls, H. J.; Khan, S. A. Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding. Langmuir 2000, 16, 7920–7930.CrossRefGoogle Scholar
  36. 36.
    Napolitano, S.; Capponi, S.; Vanroy, B. Glassy dynamics of soft matter under 1D confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 2013, 36, 61–97.CrossRefGoogle Scholar
  37. 37.
    Wang, C. Q.; Huang, Y. H.; Liao, B.; Zhao, S. L.; Lin, G.; Cong, G. M. Effects of the conductivity of sulfonated poly(phenylene oxide) lithium by the complexation of poly(ethylene oxide). Polym. Adv. Tech. 2015, 7, 697–700.CrossRefGoogle Scholar
  38. 38.
    Di Noto, V.; Münchow, V.; Vittadello, M.; Collet, J. C.; Lavina, S. Synthesis and characterization of lithium and magnesium complexes based on [EDTA][PEG400]2 and [EDTA]3[PEG400]7. Macromol. Chem. Phys. 2002, 203, 1211–1227.CrossRefGoogle Scholar
  39. 39.
    Barnes, H. Shearthickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in newtonian liquids. J. Rheol. 1989, 33, 329–366.CrossRefGoogle Scholar
  40. 40.
    Brown, E.; Jaeger, H. M. Dynamic jamming point for shear thickening suspensions. Phys. Rev. Lett. 2009, 103, 086001.CrossRefGoogle Scholar
  41. 41.
    Fall, A.; Bertrand, F.; Ovarlez, G.; Bonn, D. Shear thickening of cornstarch suspensions. J. Rheol. 2012, 56, 145–150.CrossRefGoogle Scholar
  42. 42.
    Saito, Y.; Hirose, Y.; Otsubo, Y. Shear-induced reversible gelation of nanoparticle suspensions flocculated by poly(ethylene oxide). Colloid. Surf. A: Physicochem. Eng. Aspects 2011, 384, 40–46.CrossRefGoogle Scholar
  43. 43.
    Zheng, Z.; Song, Y.; Wang, X.; Zheng, Q. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition- dependent sol and gel behaviors and energy-mediated shear responses. J. Rheol. 2015, 59, 971–993.CrossRefGoogle Scholar
  44. 44.
    Boersma, W. H.; Laven, J.; Stein, H. N. Shear thickening (dilatancy) in concentrated dispersions. AICHE J. 1990, 36, 321–332.CrossRefGoogle Scholar
  45. 45.
    Wagner, N. J.; Brady, J. F. Shear thickening in colloidal dispersions. Phys. Today 2009, 62, 27–32.CrossRefGoogle Scholar
  46. 46.
    Cheng, X.; Mccoy, J. H.; Israelachvili, J. N.; Cohen, I. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 2011, 333, 1276–1279.CrossRefGoogle Scholar
  47. 47.
    Brown, E.; Forman, N. A.; Orellana, C. S.; Zhang, H. J.; Maynor, B. W.; Betts, D. E.; DeSimone, J. M.; Jaeger, H. M. Generality of shear thickening in dense suspensions. Nat. Mater. 2010, 9, 220–224.CrossRefGoogle Scholar
  48. 48.
    Waitukaitis, S. R.; Jaeger, H. M. Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 2012, 487, 205–209.CrossRefGoogle Scholar
  49. 49.
    Xu, B.; Song, Y.; Zheng, Q. Molecular relaxation and rheological behaviors of fumed silica/low-molecular weight polyethylene glycol suspensions. Acta Polymerica Sinica (in Chinese) 2017, 1832–1840.Google Scholar
  50. 50.
    Nordström, J.; Aguilera, L.; Matic, A. Effect of lithium salt on the stability of dispersions of fumed silica in the ionic liquid BMImBF4. Langmuir 2012, 28, 4080–4085.CrossRefGoogle Scholar
  51. 51.
    Heinrich, G.; Klüppel, M.; Vilgis, T. A. Reinforcement of elastomers. Curr. Opin. Solid Struct. Mater. 2002, 6, 195–203.CrossRefGoogle Scholar
  52. 52.
    Zhu, Z. Y.; Thompson, T.; Wang, S. Q.; von Meerwall, E. D.; Halasa, A. Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 2005, 38, 8816–8824.CrossRefGoogle Scholar
  53. 53.
    Filippone, G.; Romeo, G.; Acierno, D. Viscoelasticity and structure of polystyrene/fumed silica nanocomposites: Filler network and hydrodynamic contributions. Langmuir 2010, 26, 2714–2720.CrossRefGoogle Scholar
  54. 54.
    Bailly, M.; Kontopoulou, M.; El Mabrouk, K. Effect of polymer/ filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites. Polymer 2010, 51, 5506–5515.CrossRefGoogle Scholar
  55. 55.
    Wen, Y. H.; Lu, Y. Y.; Dobosz, K. M.; Archer, L. A. Structure, ion transport, and rheology of nanoparticle salts. Macromolecules 2014, 47, 4479–4492.CrossRefGoogle Scholar
  56. 56.
    Kim, S. Y.; Meyer, H. W.; Saalwächter, K.; Zukoski, C. F. Polymer dynamics in PEG-silica nanocomposites: Effects of polymer molecular weight, temperature and solvent dilution. Macromolecules 2012, 45, 4225–4237.CrossRefGoogle Scholar
  57. 57.
    Kim, S. Y.; Zukoski, C. F. Molecular weight effects on particle and polymer microstructure in concentrated polymer solutions. Macromolecules 2013, 46, 6634–6643.CrossRefGoogle Scholar
  58. 58.
    Kwon, N. K.; Park, C. S.; Lee, C. H.; Kim, Y. S.; Zukoski, C. F.; Kim, S. Y. Tunable nanoparticle stability in concentrated polymer solutions on the basis of the temperature dependent solvent quality. Macromolecules 2016, 49, 2307–2317.CrossRefGoogle Scholar
  59. 59.
    Srivastava, S.; Shin, J. H.; Archer, L. A. Structure and rheology of nanoparticle-polymer suspensions. Soft Matter 2012, 8, 4097–4108.CrossRefGoogle Scholar
  60. 60.
    Zhang, X. X.; Zhang, H.; Wang, X. C.; Hu, L.; Niu, J. J. Crystallization and low temperature heat-storage behavior of PEG. J Tianjin I. Text. Sci. Technol. 1997, 16, 11–14.Google Scholar
  61. 61.
    Geiser, V.; Leterrier, Y.; Manson, J. E. Rheological behavior of concentrated hyperbranched polymer/silica nanocomposite suspensions. Macromolecules 2010, 43, 7705–7712.CrossRefGoogle Scholar
  62. 62.
    Ruggerone, R.; Geiser, V.; Vacche, S. D.; Leterrier, Y.; Manson, J. E. Immobilized polymer fraction in hyperbranched polymer/ silica nanocomposite suspensions. Macromolecules 2010, 43, 10490–10497.CrossRefGoogle Scholar
  63. 63.
    Boucher, V. M.; Cangialosi, D.; Alegría, A.; Colmenero, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M. Physical aging of polystyrene/ gold nanocomposites and its relation to the calorimetric Tg depression. Soft Matter 2011, 7, 3607–3620.CrossRefGoogle Scholar
  64. 64.
    Klonos, P.; Panagopoulou, A.; Bokobza, L.; Kyritsis, A.; Peoglos, V.; Pissis, P. Comparative studies on effects of silica and titania nanoparticles on crystallization and complex segmental dynamics in poly(dimethylsiloxane). Polymer 2010, 51, 5490–5499.CrossRefGoogle Scholar
  65. 65.
    Gainaru, C.; Böhmer, R. Oligomer-to-polymer transition of poly(propylene glycol) revealed by dielectric normal modes. Macromolecules 2009, 42, 7616–7618.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations