Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 10, pp 990–994 | Cite as

Mechanism of Janus Polymerization: A DFT Study

  • Tian-Wen Bai
  • Xu-Feng Ni
  • Jun LingEmail author
  • Zhi-Quan Shen
Article
  • 17 Downloads

Abstract

Janus polymerization is featured as a combination of cationic and anionic growing ends in one living polymer chain. In the copolymerization of THF and CL catalyzed by lutetium triflates and initiated by propylene oxide, three stages are identified by kinetic study including (1) fast cationic polymerization with slow anionic one, (2) fast anionic polymerization with dormant cationic one, and (3) reactivation of cationic polymerization with coupling of anionic and cationic chain ends. In this work, density functional theory (DFT) calculation is employed to investigate the reaction details of ionic polymerization and dormancy. A “tripedal crow” configuration is proposed to illustrate the unique high-coordinated ligand exchange configuration in anionic polymerization in different stages. The trigger of dormancy is determined as chain structures rather than concentration of triflate anion according to both calculation and experimental results.

Keywords

Rare earth metal catalysts Ring-opening polymerization Ionic polymerization Reaction mechanism Quantum chemical computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21871232) and the Zhejiang Provincial Natural Science Foundation of China (No. LR15B040001).

Supplementary material

10118_2019_2318_MOESM1_ESM.pdf (465 kb)
Mechanism of Janus polymerization: A DFT study

References

  1. 1.
    You, L. X.; Ling, J. Janus polymerization. Macromolecules 2014, 47, 2219–2225.CrossRefGoogle Scholar
  2. 2.
    Qiu, H.; Yang, Z.; Shah, M. I.; Mao, Z.; Ling, J. [PCL-b-P(THF-co-CL)]m multiblock copolymer synthesized by Janus polymerization. Polymer 2017, 128, 71*77.CrossRefGoogle Scholar
  3. 3.
    Shah, M. I.; Yang, Z.; Li, Y.; Jiang, L.; Ling, J. Properties of electrospun nanofibers of multi-block copolymers of [poly-ε-caprolactone-b-poly(tetrahydrofuran-co-ε-caprolactone)]m synthesized by Janus polymerization. Polymers 2017, 9, 559.CrossRefGoogle Scholar
  4. 4.
    Li, Y.; Bai, T.; Li, Y.; Ling, J. Branched polytetrahydrofuran and poly(tetrahydrofuran-co-ε-caprolactone) synthesized by Janus polymerization: A novel self-healing material. Macromol. Chem. Phys. 2017, 218, 1600450.CrossRefGoogle Scholar
  5. 5.
    Li, Y.; von der Luhe, M.; Schacher, F. H.; Ling, J. 3-Miktoarm star terpolymers via Janus polymerization: One-step synthesis and self-assembly. Macromolecules 2018, 51, 4938–4944.CrossRefGoogle Scholar
  6. 6.
    Li, Y.; Schacher, F. H.; Ling, J. Synthesis of polypeptoidpolycaprolactone- polytetrahydrofuran heterograft molecular polymer brushes via a combination of Janus polymerization and ROMP. Macromol. Rapid Commun. 2019, 1800905.Google Scholar
  7. 7.
    Qiu, H.; Yang, Z. N.; Ling, J. Facile synthesis of functional poly(ε-caprolactone) via Janus polymerization. Chinese J. Polym. Sci. 2019, 37.Google Scholar
  8. 8.
    Devlin, F.; Finley, J.; Stephens, P.; Frisch, M. Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields—A comparison of local, nonlocal, and hybrid density functionals. J. Phys. Chem. 1995, 99, 16883–16902.CrossRefGoogle Scholar
  9. 9.
    Kim, K.; Jordan, K. Comparison of density-functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem. 1994, 98, 10089–10094.CrossRefGoogle Scholar
  10. 10.
    Fukui, K. The path of chemical reactions-the IRC approach. Acc. Chem. Res. 1981, 14, 363–368.CrossRefGoogle Scholar
  11. 11.
    Bai, T. W.; Ling, J. NAM-TMS mechanism of α-amino acid N-carboxyanhydride polymerization: A DFT study. J. Phys. Chem. A 2017, 121, 4588–4593.CrossRefGoogle Scholar
  12. 12.
    He, B. Z.; Su, H. F.; Bai, T. W.; Wu, Y. W.; Li, S. W.; Gao, M.; Hu, R. R.; Zhao, Z. J.; Qin, A. J.; Ling, J.; Tang, B. Z. Spontaneous amino-yne click polymerization: A powerful tool toward regio- and stereospecific poly(β-aminoacrylate)s. J. Am. Chem. Soc. 2017, 139, 5437–5443.CrossRefGoogle Scholar
  13. 13.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. B.01, Gaussian, Inc,; Wallingford, CT, 2016.Google Scholar
  14. 14.
    Legault, C. Y. CYLview, 1.0b, Universite de Sherbrooke, 2009 (https://doi.org/www.cylview.org).Google Scholar
  15. 15.
    Ling, J.; Shen, J. G.; Hogen-Esch, T. E. A density functional theory study of the mechanisms of scandium-alkoxide initiated coordination-insertion ring-opening polymerization of cyclic esters. Polymer 2009, 50, 3575–3581.CrossRefGoogle Scholar
  16. 16.
    Liu, J.; Ling, J.; Li, X.; Shen, Z. Monomer insertion mechanism of ring-opening polymerization of ε-caprolactone with yttrium alkoxide intermediate: A DFT study. J. Mol. Catal. AChem. 2009, 300, 59–64.CrossRefGoogle Scholar
  17. 17.
    You, L. X.; Shen, Z. Q.; Kong, J.; Ling, J. A novel approach to RE-OR bond from in situ reaction of rare earth triflates and sodium alkoxides: A versatile catalyst for living ring-opening polymerization of ε-caprolactone. Polymer 2014, 55, 2404–2410.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tian-Wen Bai
    • 1
  • Xu-Feng Ni
    • 1
  • Jun Ling
    • 1
    Email author
  • Zhi-Quan Shen
    • 1
  1. 1.Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations