Synthesis of Polyurethane/Poly(urea-formaldehyde) Double-shelled Microcapsules for Self-healing Anticorrosion Coatings

  • Yan Song
  • Kai-Feng Chen
  • Jing-Jing Wang
  • Yuan Liu
  • Tao Qi
  • Guo Liang LiEmail author


One-component, catalyst-free self-healing coatings with double-shelled polymer microcapsules have drawn considerable attention due to wide applications. In this work, the synthesis parameters of double-shelled polymer microcapsules and the mechanism of the self-healing process were systematically investigated. Apart from the chemical structure of the microcapsule shell, the shell thickness, the microcapsule size, and the core fraction could affect the self-healing anticorrosion properties. The synthesis parameters were further optimized in terms of the agitation rate, pH, weight ratio of core to shell, and temperature. Under these conditions, the microcapsule shell consisting of a rough surface formed by poly(urea-formaldehyde) and a smooth inner wall by polyurethane was prepared. The size of the microcapsules and core fraction were calculated to be approximately 30 μm and 75%, respectively. The self-healing anticorrosion coating incorporating as-synthesized microcapsules exhibited corrosion resistance in artificially scratched areas, which was further characterized by electrochemical impedance spectroscopy.


Double-shelled Microcapsules Anticorrosion Self-healing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Key Research and Development Plan (No. 2016YFC0303700), the National Natural Science Foundation of China (No. 51803215), CAS Pioneer Hundred Talents Program, and Beijing Municipal Natural Science Foundation (No. 2182075).

Supplementary material

10118_2019_2317_MOESM1_ESM.pdf (866 kb)
Synthesis of Polyurethane/Poly(urea-formaldehyde) Double-shelled Microcapsules for Self-healing Anticorrosion Coatings


  1. 1.
    Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R. Polymers with autonomous life-cycle control. Nature 2016, 540, 363–370.CrossRefGoogle Scholar
  2. 2.
    Zhang, P.; Li, G. Advances in healing-on-demand polymers and polymer composites. Prog. Polym. Sci. 2016, 57, 32–63.CrossRefGoogle Scholar
  3. 3.
    Diesendruck, C. E.; Sottos, N. R.; Moore, J. S.; White, S. R. Biomimetic self-healing. Angew. Chem. Int. Ed. 2015, 54, 10428–10447.CrossRefGoogle Scholar
  4. 4.
    Hughes, A. E.; Cole, I. S.; Muster, T. H.; Varley, R. J. Designing green, self-healing coatings for metal protection. NPG Asia Mater. 2010, 2, 143–151.CrossRefGoogle Scholar
  5. 5.
    Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Selfhealing mechanisms in smart protective coatings: A review. Corros. Sci. 2018, 144, 74–88.CrossRefGoogle Scholar
  6. 6.
    Shchukin, D.; Mohwald, H. A coat of many functions. Science 2013, 341, 1458–1459.CrossRefGoogle Scholar
  7. 7.
    Wang, L. T.; Deng, L. P.; Zhang, D. W.; Qian, H. C.; Du, C. W.; Li, X. G.; Mol, J. M. C.; Terryn, H. A. Shape memory composite (SMC) self-healing coatings for corrosion protection. Prog. Org. Coat. 2016, 97, 261–268.CrossRefGoogle Scholar
  8. 8.
    Qian, H. C.; Xu, D. K.; Du, C. W.; Zhang, D. W.; Li, X. G.; Huang, L. Y.; Deng, L. P.; Tu, Y. C.; Mol, J. M. C.; Terryn, H. A. Dual-action smart coatings with a self-healing superhydrophobic surface and anticorrosion properties. J. Mater. Chem. A 2017, 5, 2355–2364.CrossRefGoogle Scholar
  9. 9.
    Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew. Chem. Int. Ed. 2018, 57, 13838–13842.CrossRefGoogle Scholar
  10. 10.
    Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, Transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.CrossRefGoogle Scholar
  11. 11.
    Liu, C. C.; Zhang, A. Y.; Ye, L.; Feng, Z. G. Self-healing biodegradable poly(urea-urethane) elastomers based on hydrogen bonding interactions. Chinese J. Polym. Sci. 2013, 31, 251–262.CrossRefGoogle Scholar
  12. 12.
    Liu, X. Y.; Zhong, M.; Shi, F. K.; Xu, H.; Xie, X. M. Multi-bond network hydrogels with robust mechanical and self-healable properties. Chinese J. Polym. Sci. 2017, 35, 1253–1267.CrossRefGoogle Scholar
  13. 13.
    Shchukin, D. G.; Möhwald, H. Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Adv. Funct. Mater. 2007, 17, 1451–1458.CrossRefGoogle Scholar
  14. 14.
    Zheludkevich, M. L.; Shchukin, D. G.; Yasakau, K. A.; Möhwald, H.; Ferreira, M. G. S. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem. Mater. 2007, 19, 402–411.CrossRefGoogle Scholar
  15. 15.
    Liu, X.; Zhang, H.; Wang, J.; Wang, Z.; Wang, S. Preparation of epoxy microcapsule based self-healing coatings and their behavior. Surf. Coat. Techol. 2012, 206, 4976–4980.CrossRefGoogle Scholar
  16. 16.
    Song, Y. K.; Jo, Y. H.; Lim, Y. J.; Cho, S. Y.; Yu, H. C.; Ryu, B. C.; Lee, S. I.; Chung, C. M. Sunlight-induced self-healing of a microcapsuletype protective coating. ACS Appl. Mater. Interfaces 2013, 5, 1378–1384.CrossRefGoogle Scholar
  17. 17.
    Chen, K.; Zhou, S.; Yang, S.; Wu, L. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules. Adv. Funct. Mater. 2015, 25, 1035–1041.CrossRefGoogle Scholar
  18. 18.
    Suryanarayana, C.; Rao, K. C.; Kumar, D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog. Org. Coat. 2008, 63, 72–78.CrossRefGoogle Scholar
  19. 19.
    Samadzadeh, M.; Boura, S. H.; Peikari, M.; Ashrafi, A.; Kasiriha, M. Tung oil: An autonomous repairing agent for self-healing epoxy coatings. Prog. Org. Coat. 2011, 70, 383–387.CrossRefGoogle Scholar
  20. 20.
    Yang, J.; Keller, M. W.; Moore, J. S.; White, S. R.; Sottos, N. R. Microencapsulation of isocyanates for self-healing polymers. Macromolecules 2008, 41, 9650–9655.CrossRefGoogle Scholar
  21. 21.
    Huang, M.; Yang, J. Salt spray and EIS studies on HDI microcapsule-based self-healing anticorrosive coatings. Prog. Org. Coat. 2014, 77, 168–175.CrossRefGoogle Scholar
  22. 22.
    Sun, D. W.; Zhang, H.; Tang, X. Z.; Yang, J. L. Water resistant reactive microcapsules for self-healing coatings in harsh environments. Polymer 2016, 91, 33–40.CrossRefGoogle Scholar
  23. 23.
    Khun, N. W.; Sun, D. W.; Huang, M. X.; Yang, J. L.; Yue, C. Y. Wear resistant epoxy composites with diisocyanate-based self-healing functionality. Wear 2014, 313, 19–28.CrossRefGoogle Scholar
  24. 24.
    Wu, G.; An, J. L.; Sun, D. W.; Tang, X. Z.; Xiang, Y.; Yang, J. L. Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. J. Mater. Chem. A 2014, 2, 11614–11620.CrossRefGoogle Scholar
  25. 25.
    Gite, V. V.; Tatiya, P. D.; Marathe, R. J.; Mahulikar, P. P.; Hundiwale, D. G. Microencapsulation of quinoline as a corrosion inhibitor in polyurea microcapsules for application in anticorrosive PU coatings. Prog. Org. Coat. 2015, 83, 11–18.CrossRefGoogle Scholar
  26. 26.
    Lang, S.; Zhou, Q. Synthesis and characterization of poly(ureaformaldehyde)microcapsules containing linseed oil for self-healing coating development. Prog. Org. Coat. 2017, 105, 99–110.CrossRefGoogle Scholar
  27. 27.
    Sun, D.; An, J.; Wu, G.; Yang, J. Double-layered reactive microcapsules with excellent thermal and non-polar solvent resistance for self-healing coatings. J. Mater. Chem. A 2015, 3, 4435–4444.CrossRefGoogle Scholar
  28. 28.
    Caruso, M. M.; Blaiszik, B. J.; Jin, H.; Schelkopf, S. R.; Stradley, D. S.; Sottos, N. R.; White, S. R.; Moore, J. S. Robust, double-walled microcapsules for self-healing polymeric materials. ACS Appl. Mater. Interfaces 2010, 2, 1195–1199.CrossRefGoogle Scholar
  29. 29.
    Ming, Y.; Hu, J.; Xing, J.; Wu, M.; Qu, J. Preparation of polyurea/melamine formaldehyde double-layered self-healing microcapsules and investigation on core fraction. J. Microencapsulation 2016, 33, 307–314.CrossRefGoogle Scholar
  30. 30.
    Jobdeedamrong, A.; Jenjob, R.; Crespy, D. Encapsulation and release of essential oils in functional silica nanocontainers. Langmuir 2018, 34, 13235–13243.CrossRefGoogle Scholar
  31. 31.
    Liu, G.; Xie, B.; Fu, D.; Wang, Y.; Fu, Q.; Wang, D. Preparation of nearly monodisperse microcapsules with controlled morphology by in situ polymerization of a shell layer. J. Mater. Chem. 2009, 19, 6605–6609.CrossRefGoogle Scholar
  32. 32.
    Alizadegan, F.; Pazokifard, S.; Mirabedini, S. M.; Danaei, M.; Farnood, R. Polyurethane-based microcapsules containing reactive isocyanate compounds: Study on preparation procedure and solvent replacement. Colloid. Surface. A 2017, 529, 750–759.CrossRefGoogle Scholar
  33. 33.
    Rule, J. D.; Sottos, N. R.; White, S. R. Effect of microcapsule size onthe performance of self-healing polymers. Polymer 2007, 48, 3520–3529.CrossRefGoogle Scholar
  34. 34.
    Deng, W.; Guo, H. C.; Yu, W. L.; Kan, C. Y. Effects of shell composition, dosage and alkali type on the morphology of polymer hollow microspheres. Chinese J. Polym. Sci. 2018, 36, 43–48.CrossRefGoogle Scholar
  35. 35.
    Shi, X. D.; Sun, P. J.; Gan, Z. H. Preparation of porous polylactide microspheres and their application in tissue engineering. Chinese J. Polym. Sci. 2018, 36, 712–719.CrossRefGoogle Scholar
  36. 36.
    Yuan, Y.; Sun, P. J.; Shi, X. D.; Gan, Z. H.; Wang, F. S. Biodegradable microspheres with poly(N-isopropylacrylamide) Enriched surface: Thermo-responsibility, biodegradation and drug release. Chinese J. Polym. Sci. 2015, 33, 1598–1605.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yan Song
    • 1
  • Kai-Feng Chen
    • 2
    • 3
  • Jing-Jing Wang
    • 2
    • 3
  • Yuan Liu
    • 1
  • Tao Qi
    • 1
  • Guo Liang Li
    • 1
    Email author
  1. 1.National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Xiamen Advanced Materials Academy of Luoyang Ship Material Research InstituteXiamenChina
  3. 3.Science and Technology on Marine Corrosion and Protection LaboratoryQingdaoChina

Personalised recommendations