Facile Synthesis of Functional Poly(methyltriazolylcarboxylate)s by Solvent- and Catalyst-free Butynoate-Azide Polycycloaddition

  • Wei-Wen Chi
  • Rong-Yuan Zhang
  • Ting Han
  • Jian Du
  • Hong-Kun LiEmail author
  • Wei-Jie ZhangEmail author
  • Yong-Fang Li
  • Ben Zhong TangEmail author


The copper-catalyzed and metal-free azide-alkyne click polymerizations have become efficient tools for polymer synthesis. However, the 1,3-dipolar polycycloadditions between internal alkynes and azides are rarely employed to construct functional polymers. Herein, the polycycloadditions of dibutynoate (1) and tetraphenylethene-containing diazides (2) were carried out at 100 °C for 12 h under solvent- and catalyst-free conditions, producing soluble poly(methyltriazolylcarboxylate)s (PMTCs) with high molecular weights in high yields. The resultant polymers were thermally stable with 5% weight loss temperatures up to 377 °C. The PMTCs showed aggregation-induced emission (AIE) properties. They could work as fluorescent sensors for detecting explosive with high sensitivity, and generate two-dimensional fluorescent photopatterns with high resolution. Furthermore, their triazolium salts could be utilized for cell-imaging applications.


Solvent- and catalyst-free polycycloaddition Aggregation-induced emission Photopattern Cell imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the National Natural Science Foundation of China (Nos. 21875152 and 21404077), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB150034), and the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD). H. K. Li acknowledges the financial supports from Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501023B) and China Postdoctoral Science Foundation (No. 2016M591906).

Supplementary material

10118_2019_2316_MOESM1_ESM.pdf (1.4 mb)
Facile Synthesis of Functional Poly(methyltriazolylcarboxylate)s by Solvent- and Catalyst-free Butynoate-Azide Polycycloaddition


  1. 1.
    Liu, Y.; Qin, A.; Tang, B. Z. Polymerizations based on triple-bond building blocks. Prog. Polym. Sci. 2018, 78, 92–138.CrossRefGoogle Scholar
  2. 2.
    Liu, J.; Lam, J. W. Y.; Tang, B. Z. Acetylenic polymers: Syntheses, structures, and functions. Chem. Rev. 2009, 109, 5799–5807.CrossRefGoogle Scholar
  3. 3.
    Huisgen R. in 1,3-Dipolar cycloaddition chemistry, (Ed.: A. Padwa) Wiley, New York, 1984.Google Scholar
  4. 4.
    Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599.CrossRefGoogle Scholar
  5. 5.
    Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064.CrossRefGoogle Scholar
  6. 6.
    Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016, 116, 3086–3240.CrossRefGoogle Scholar
  7. 7.
    Golas, P. L.; Matyjaszewski, K. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chem. Soc. Rev. 2010, 39, 1338–1354.CrossRefGoogle Scholar
  8. 8.
    Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Recent advances in alkyne-based click polymerizations. Polym. Chem. 2018, 9, 2853–2867.CrossRefGoogle Scholar
  9. 9.
    Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997–4022.CrossRefGoogle Scholar
  10. 10.
    Li, H.; Qin, A.; Sun, J. Z.; Tang, B. Z. Azide-alkyne click polymerization: An update. Chinese J. Polym. Sci. 2012, 30, 1–15.CrossRefGoogle Scholar
  11. 11.
    Qin, A.; Lam, J. W. Y.; Tang, B. Z. Click polymerization: Progresses, challenges, and opportunities. Macromolecules 2010, 43, 8693–8702.CrossRefGoogle Scholar
  12. 12.
    Becer, C. R.; Hoogenboom, R.; Schubert, U. S. Click chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed. 2009, 48, 4900–4908.CrossRefGoogle Scholar
  13. 13.
    Usluer, Ö.; Abbas, M.; Wantz, G.; Vignau, L.; Hirsch, L.; Grana, E.; Brochon, C.; Cloutet, E.; Hadziioannou, G. Metal residues in semiconducting polymers: Impact on the performance of organic electronic devices. ACS Macro Lett. 2014, 3, 1134–1138.CrossRefGoogle Scholar
  14. 14.
    Li, B.; Huang, D.; Qin, A.; Tang, B. Z. Progress on catalytic systems used in click polymerization. Macromol. Rapid Commun. 2018, 39, 1800098.CrossRefGoogle Scholar
  15. 15.
    Qin, A.; Liu, Y.; Tang, B. Z. Regioselective metal-free click polymerization of azides and alkynes. Macromol. Chem. Phys. 2015, 216, 818–828.CrossRefGoogle Scholar
  16. 16.
    Ni, B.; Wang, C.; Wu, H.; Pei, J.; Ma, Y. Copper-free cycloaddition of azide and alkyne in crystalline state facilitated by areneperfluoroarene interactions. Chem. Commun. 2010, 46, 782–784.CrossRefGoogle Scholar
  17. 17.
    Meng, X.; Chen, H.; Xu, S.; Ma, Y. Metal-free 1,3-dipolar cycloaddition polymerization via prearrangement of azide and alkyne in the solid state. CrystEngComm 2014, 16, 9983–9986.CrossRefGoogle Scholar
  18. 18.
    Pathigoolla, A.; Gonnade, R. G.; Sureshan, K. M. Topochemical click reaction: Spontaneous self-stitching of a monosaccharide to linear oligomers through lattice-controlled azide-alkyne cycloaddition. Angew. Chem. Int. Ed. 2012, 51, 4362–4366.CrossRefGoogle Scholar
  19. 19.
    Krishnan, B. P.; Sureshan, K. M. Topochemical azide-alkyne cycloaddition reaction in gels: Size-tunable synthesis of triazole-linked polypeptides. J. Am. Chem. Soc. 2017, 139, 1584–1589.CrossRefGoogle Scholar
  20. 20.
    Sandmannn, B.; Happ, B.; Vitz, J.; Paulus, R. M.; Hager, M. D.; Burtscher, P.; Moszner, N.; Schubert, U. S. Metal-free cycloaddition of internal alkynes and multifunctional azides under solvent-free conditions. Macromol. Chem. Phys. 2014, 215, 1603–1608.CrossRefGoogle Scholar
  21. 21.
    Pretzel, D.; Sandmann, B.; Hartlieb, M.; Vitz, J.; Hölzer, S.; Fritz, N.; Moszner, N.; Schubert, U. S. Biological evaluation of 1,2,3-triazolebased polymers for potential applications as hard tissue material. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1843–1847.CrossRefGoogle Scholar
  22. 22.
    Wei, Q.; Deng, H. Q.; Cai, Y. B.; Lam, J. W. Y.; Li, J.; Sun, J. Z.; Gao, M.; Qin, A.; Tang, B. Z. Efficient polymerization of azide and active internal alkynes. Macromol. Rapid Commun. 2012, 33, 1356–1361.Google Scholar
  23. 23.
    Yuan, W.; Chi, W.; Liu, R.; Li, H.; Li, Y.; Tang, B. Z. Synthesis of poly(phenyltriazolylcarboxylate)s with aggregation-induced emission characteristics by metal-free 1,3-dipolar polycycloaddition of phenylpropiolate and azides. Macromol. Rapid Commun. 2017, 38, 1600745.CrossRefGoogle Scholar
  24. 24.
    Yuan, W.; Chi, W.; Han, T.; Du, J.; Li, H.; Li, Y.; Tang, B. Z. Metal-free phenylpropiolate-azide polycycloaddition: Efficient synthesis of functional poly(phenyltriazolylcarboxylate)s. Polym. Chem. 2018, 9, 5215–5223.CrossRefGoogle Scholar
  25. 25.
    Chi, W.; Yuan, W.; Du, J.; Han, T.; Li, H.; Li, Y.; Tang, B. Z. Construction of functional hyperbranched poly(phenyltriazolylcarboxylate)s by metal-free phenylpropiolate-azide polycycloaddition. Macromol. Rapid Commun. 2018, 39, 1800604.CrossRefGoogle Scholar
  26. 26.
    Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.CrossRefGoogle Scholar
  27. 27.
    Feng, G.; Liu, B. Aggregation-induced emission (AIE) dots: Emerging theranostic nanolights. Acc. Chem. Res. 2018, 51, 1404–1414.CrossRefGoogle Scholar
  28. 28.
    Mei, J.; Huang, Y.; Tian, H. Progress and trends in AIE-based bioprobes: A brief overview. ACS Appl. Mater. Interfaces 2018, 10, 12217–12261.CrossRefGoogle Scholar
  29. 29.
    Ding, S.; Liu, M.; Hong, Y. Biothiol-specific fluorescent probes with aggregation-induced emission characteristics. Sci. China Chem. 2018, 61, 882–891.CrossRefGoogle Scholar
  30. 30.
    Ma, S.; Ma, L.; Han, W.; Jiang, S.; Xu, B.; Tian, W. Progress in 9,10-distyrylanthracene derivatives with aggregation-induced emission. Sci. Sin. Chim. 2018, 48, 683–697.CrossRefGoogle Scholar
  31. 31.
    Hu, Y. B.; Lam, J. W. Y.; Tang, B. Z. Recent progress in AIE-active polymers. Chinese J. Polym. Sci. 2019, 37, 289–301.CrossRefGoogle Scholar
  32. 32.
    Yang, Z.; Chi, Z.; Mao, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Aldred, M. P.; Chi, Z. Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front. 2018, 2, 861–890.CrossRefGoogle Scholar
  33. 33.
    Liu, M.; Gao, P.; Wan, Q.; Deng, F.; Wei, Y.; Zhang, X. Recent advances and future prospects of aggregation-induced emission carbohydrate polymers. Macromol. Rapid Commun. 2017, 38, 1600575.CrossRefGoogle Scholar
  34. 34.
    Wu, Y.; Qin, A.; Tang, B. Z. AIE-active polymers for explosive detection. Chinese J. Polym. Sci. 2017, 35, 141–154.CrossRefGoogle Scholar
  35. 35.
    Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404, 53–56.CrossRefGoogle Scholar
  36. 36.
    Han, T.; Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. Monomer stoichiometry imbalance-promoted formation of multisubstituted polynaphthalenes by palladium-catalyzed polycouplings of aryl iodides and internal diynes. Polym. Chem. 2018, 9, 885–893.CrossRefGoogle Scholar
  37. 37.
    Dimitrov-Raytchev, P.; Beghdadi, S.; Serghei, A.; Drockenmuller, E. Main-chain 1,2,3-triazolium-based poly(ionic liquid)s issued from AB + AB click chemistry polyaddition. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 34–38.CrossRefGoogle Scholar
  38. 38.
    Obadia, M. M.; Jourdain, A.; Serghei, A.; Ikeda, T.; Drockenmuller, E. Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s. Polym. Chem. 2017, 8, 910–917.CrossRefGoogle Scholar
  39. 39.
    Jourdain, A.; Antoniuk, I.; Serghei, A.; Espuche, E.; Drockenmuller, E. 1,2,3-Triazolium-based linear ionic polyurethanes. Polym. Chem. 2017, 8, 5148–5156.Google Scholar
  40. 40.
    Tan, W.; Li, Q.; Dong, F.; Qiu, S.; Zhang, J.; Guo, Z. Novel 1,2,3-triazolium-functionalized starch derivatives: Synthesis, characterization, and evaluation of antifungal property. Carbohydr. Polym. 2016, 160, 163–171.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  2. 2.Department of UrologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
  3. 3.Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science & Technology, Clear Water BayKowloon, Hong KongChina

Personalised recommendations