Advertisement

Phthalonitrile Resins Derived from Vanillin: Synthesis, Curing Behavior, and Thermal Properties

  • Yue Han
  • Dong-Hao Tang
  • Guang-Xing Wang
  • Ya-Nan Sun
  • Ying Guo
  • Heng ZhouEmail author
  • Wen-Feng QiuEmail author
  • Tong Zhao
Article
  • 9 Downloads

Abstract

Vanillin was used as sustainable source for phthalonitrile monomer synthesis, and allyl/propargyl ether moieties were introduced to improve the processability at the minimal cost of thermal properties. The synthesis route was optimized to minimize side-reactions and simplify post-processing, and the monomers were obtained in high purity and good yields. The curing behavior, mechanism, and processability of the monomers were studied, and the thermal properties of cured polymers were evaluated. Of the two monomers, the allyl ether-containing one exhibited a wide processing window of 185 °C, and was mainly cured into phthalocyanine and linear aliphatic structures through self-catalytic curing process. Also, the glass transition temperature was higher than 500 °C. In contrast, the propargyl ether-containing monomer could only be partially cured, and heat resistance was found to be compromised. Compared with traditional petroleum-based phthalonitrile resins, the bio-based monomers could be cured without the addition of catalysts, and improvement in processability was achieved at no cost of thermal performances.

Keywords

Allyl ether Curing mechanism Phthalonitrile Thermal properties Vanillin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51803059 and 51873215), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06C322), and National Defense Science and Technology Innovation Special Zone Project. The authors gratefully thank the Young Elite Scientist Sponsorship Program by CAST (YESS) and the Youth Innovation Promotion Association of CAS (No. 2017047). The measurements of solid 13C-NMR were performed at the Center for Physicochemical Analysis and Measurements in ICCAS. The help from Ms. Ningning Wu was acknowledged.

Supplementary material

10118_2019_2311_MOESM1_ESM.pdf (3.1 mb)
Phthalonitrile Resins Derived from Vanillin: Synthesis, Curing Behavior and Thermal Properties

References

  1. 1.
    Augustine, D.; Mathew, D.; Reghunadhan, N. C. P. Mechanistic and kinetic aspects of the curing of phthalonitrile monomers in the presence of propargyl groups. Polymer 2015, 60, 308–317.CrossRefGoogle Scholar
  2. 2.
    Wang, M.; Ning, Y. Oligosilylarylnitrile: The thermoresistant thermosetting resin with high comprehensive properties. ACS Appl. Mater. Interfaces 2018, 10, 11933–11940.CrossRefGoogle Scholar
  3. 3.
    Phua, E. J. R.; Liu, M.; Cho, B.; Liu, Q.; Amini, S.; Hu, X.; Gan, C. L. Novel high temperature polymeric encapsulation material for extreme environment electronics packaging. Mater. Design 2018, 141, 202–209.CrossRefGoogle Scholar
  4. 4.
    Bulgakov, B. A.; Sulimov, A. V.; Babkin, A. V.; Timoshkin, I. A.; Solopchenko, A. V.; Kepman, A. V.; Avdeev, V. V. Phthalonitrile-carbon fiber composites produced by vacuum infusion process. J. Compos. Mater. 2017, 51, 4157–4164.CrossRefGoogle Scholar
  5. 5.
    Zong, L.; Liu, C.; Zhang, S.; Wang, J.; Jian, X. Enhanced thermal properties of phthalonitrile networks by cooperating phenyl-s-triazine moieties in backbones. Polymer 2015, 77, 177–188.CrossRefGoogle Scholar
  6. 6.
    Han, Y.; Wang, G.; Qiu, W.; Guo, Y.; Sun, Y.; Zhang, Y.; Zhou, H.; Zhao, T. Activated-carbon-supported calcium oxide: A selective and efficient catalyst for nitrile-containing diaryl ether synthesis. Asian J. Org. Chem. 2018, 7, 2511–2517.CrossRefGoogle Scholar
  7. 7.
    Xu, Y. L.; Dayo, A. Q.; Derradji, M.; Wang, J.; Liu, W. B.; Song, S.; Tang, T. Copolymerization of bisphthalonitrile/benzoxazine blends: Curing behavior, thermomechanical and thermal properties. React. Funct. Polym. 2018, 123, 97–105.CrossRefGoogle Scholar
  8. 8.
    Sastri, S. B.; Armistead, J. P.; Keller, T. M. Phthalonitrile-carbon fiber composites. Polym. Compos. 1996, 17, 816–823.CrossRefGoogle Scholar
  9. 9.
    Song, Y.; Zong, L.; Bao, F.; Li, G.; Wu, Z.; Li, N.; Wang, J.; Jian, X. Reduced curing kinetic energy and enhanced thermal resistance of phthalonitrile resins modified with inorganic particles. Polym. Adv. Technol. 2018, 29, 1922–1929.CrossRefGoogle Scholar
  10. 10.
    Keller, T. M.; Dominguez, D. D. High temperature resorcinolbased phthalonitrile polymer. Polymer 2005, 46, 4614–4618.CrossRefGoogle Scholar
  11. 11.
    Mohanty, A. K.; Vivekanandhan, S.; Pin, J. M.; Misra, M. Composites from renewable and sustainable resources: Challenges and innovations. Science 2018, 362, 536–542.CrossRefGoogle Scholar
  12. 12.
    Upton, B. M.; Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective. Chem. Rev. 2016, 116, 2275–2306.CrossRefGoogle Scholar
  13. 13.
    Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased thermosetting epoxy: Present and future. Chem. Rev. 2014, 114, 1082–1115.CrossRefGoogle Scholar
  14. 14.
    Qi, Y.; Weng, Z.; Wang, J.; Zhang, S.; Zong, L.; Liu, C.; Jian, X. A novel bio-based phthalonitrile resin derived from catechin: Synthesis and comparison of curing behavior with petroleumbased counterpart. Polym. Int. 2018, 67, 322–329.CrossRefGoogle Scholar
  15. 15.
    Laskoski, M.; Clarke, J. S.; Neal, A.; Harvey, B. G.; Ricks-Laskoski, H. L.; Hervey, W. J.; Daftary, M. N.; Shepherd, A. R.; Keller, T. M. Sustainable high-temperature phthalonitrile resins derived from resveratrol and dihydroresveratrol. ChemistrySelect 2016, 1, 3423–3427.CrossRefGoogle Scholar
  16. 16.
    Laskoski, M.; Shepherd, A. R.; Mahzabeen, W.; Clarke, J. S.; Keller, T. M.; Sorathia, U. Sustainable, fire-resistant phthalonitrile-based glass fiber composites. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1128–1132.CrossRefGoogle Scholar
  17. 17.
    Fache, M.; Boutevin, B.; Caillol, S. Vanillin, a key-intermediate of biobased polymers. Eur. Polym. J. 2015, 68, 488–502.CrossRefGoogle Scholar
  18. 18.
    Savonnet, E.; Grau, E.; Grelier, S.; Defoort, B.; Cramail, H. Divanillinbased epoxy precursors as DGEBA substitutes for biobased epoxy thermosets. ACS Sustain. Chem. Eng. 2018, 6, 11008–11017.CrossRefGoogle Scholar
  19. 19.
    Wang, S.; Ma, S.; Xu, C.; Liu, Y.; Dai, J.; Wang, Z.; Liu, X.; Chen, J.; Shen, X.; Wei, J.; Zhu, J. Vanillin-derived high-performance flame retardant epoxy resins: Facile synthesis and properties. Macromolecules 2017, 50, 1892–1901.CrossRefGoogle Scholar
  20. 20.
    Harvey, B. G.; Guenthner, A. J.; Meylemans, H. A.; Haines, S. R. L.; Lamison, K. R.; Groshens, T. J.; Cambrea, L. R.; Davis, M. C.; Lai, W. W. Renewable thermosetting resins and thermoplastics from vanillin. Green Chem. 2015, 17, 1249–1258.CrossRefGoogle Scholar
  21. 21.
    Xu, S.; Han, Y.; Guo, Y.; Luo, Z.; Ye, L.; Li, Z.; Zhou, H.; Zhao, Y.; Zhao, T. Allyl phenolic-phthalonitrile resins with tunable properties: Curing, processability and thermal stability. Eur. Polym. J. 2017, 95, 394–405.CrossRefGoogle Scholar
  22. 22.
    Sheng, H.; Peng, X.; Guo, H.; Yu, X.; Naito, K.; Qu, X.; Zhang, Q. Synthesis of high performance bisphthalonitrile resins cured with self-catalyzed 4-aminophenoxy phthalonitrile. Thermochim. Acta 2014, 577, 17–24.CrossRefGoogle Scholar
  23. 23.
    Smith, M. B.; March, J. March’s advanced organic chemistry: Reactions, mechanisms, and structure. John Wiley & Sons, 2007.Google Scholar
  24. 24.
    Ichikawa, H.; Maruoka, K. The Claisen rearrangement: Methods and applications. Wiley-VCH Verlag GmbH & Co, 2007.Google Scholar
  25. 25.
    Reghunadhan, N. C. P.; Krishnan, K.; Ninan, K. N. Differential scanning calorimetric study on the Claisen rearrangement and thermal polymerisation of diallyl ether of bisphenols. Thermochim. Acta 2000, 359, 61–67.CrossRefGoogle Scholar
  26. 26.
    Sumner, M. J.; Sankarapandian, M.; McGrath, J. E.; Riffle, J. S.; Sorathia, U. Flame retardant novolac-bisphthalonitrile structural thermosets. Polymer 2002, 43, 5069–5076.CrossRefGoogle Scholar
  27. 27.
    Zeng, K.; Zhou, K.; Zhou, S.; Hong, H.; Zhou, H.; Wang, Y.; Miao, P.; Yang, G. Studies on self-promoted cure behaviors of hydroxycontaining phthalonitrile model compounds. Eur. Polym. J. 2009, 45, 1328–1335.CrossRefGoogle Scholar
  28. 28.
    Ma, J. Z.; Cheng, K.; Lv, J. B.; Chen, C.; Hu, J. H.; Zeng, K.; Yang, G. Phthalonitrile-PPO Blends: Cure behavior and properties. Chinese J. Polym. Sci. 2018, 36, 497–504.CrossRefGoogle Scholar
  29. 29.
    Hu, J.; Liu, Y.; Jiao, Y.; Ji, S.; Sun, R.; Yuan, P.; Zeng, K.; Pu, X.; Yang, G. Self-promoted phthalimide-containing phthalonitrile resins with sluggish curing process and excellent thermal stability. RSC Adv. 2015, 5, 16199–16206.CrossRefGoogle Scholar
  30. 30.
    Guo, H.; Chen, Z.; Liu, X. Effect of processing conditions on physical properties of 3-aminophenoxyphthalonitrile/epoxy laminates. J. Appl. Polym. Sci. 2014, 131, 39746.Google Scholar
  31. 31.
    Zhao, X.; Guo, H.; Lei, Y.; Zhao, R.; Zhong, J.; Liu, X. Effect of polyarylene ether nitriles on processing and mechanical behaviors of phthalonitrile-epoxy copolymers and glass fiber laminated composites. J. Appl. Polym. Sci. 2013, 127, 4873–4878.CrossRefGoogle Scholar
  32. 32.
    Jiang, M.; Xu, M.; Jia, K.; Liu, X. Copolymerization of self-catalyzed phthalonitrile with bismaleimide toward high-temperatureresistant polymers with improved processability. High Perform. Polym. 2016, 28, 895–907.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yue Han
    • 1
  • Dong-Hao Tang
    • 2
  • Guang-Xing Wang
    • 2
    • 3
    • 4
  • Ya-Nan Sun
    • 2
    • 3
  • Ying Guo
    • 2
  • Heng Zhou
    • 2
    Email author
  • Wen-Feng Qiu
    • 1
    Email author
  • Tong Zhao
    • 1
    • 2
  1. 1.South China Advanced Institute for Soft Matter Science and TechnologySouth China University of TechnologyGuangzhouChina
  2. 2.Laboratory of Advanced Polymeric Materials, Institute of ChemistryChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Sinosteel Anshan Research Institute of Thermo-Energy Co., LTDAnshanChina

Personalised recommendations