Chinese Journal of Polymer Science

, Volume 37, Issue 10, pp 1015–1022 | Cite as

Polypropylene Separators with Robust Mussel-inspired Coatings for High Lithium-ion Battery Performances

  • Chao Zhang
  • Hong-Qing Liang
  • Jun-Ke Pi
  • Guang-Peng WuEmail author
  • Zhi-Kang XuEmail author


The performances of lithium-ion batteries (LIBs) are dependent on the wettability and stability of porous separators. Musselinspired coatings seem to be useful to improve the surface wettability of commercialized polyolefin separators. However, it is still a challenge to guarantee their stability under polar electrolytes. Herein, we report a facile and versatile way to enhance the wettability and stability of polypropylene separators by constructing robust polydopamine (PDA) coatings triggered with CuSO4/H2O2. These coatings were conveniently deposited on the polypropylene separator surfaces and the PDA-coated separators exhibited the improved surface wettability and thermal stability. The electrolyte uptake increased nearly two folds from the pristine separator to the modified ones. Correspondingly, the ionic conductivity also rose from 0.82 mS·cm-1 to 1.30 mS·cm-1. Most importantly, the CuSO4/H2O2-triggered PDA coatings were very stable under strong polar electrolytes, endowing the cells with excellent cycle performance and enhanced C-rate capacity. Overall, the results unequivocally demonstrate that application of PDA coatings on polyolefin separator triggered by CuSO4/H2O2 is a facile and efficient method for improving the wettability and stability of separators for high LIBs performance.


Polypropylene separator Lithium-ion battery Surface wettability Dopamine Mussel-inspired coatings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Zhejiang Provincial Natural Science Foundation of China (No. LZ15E030001) and the National Natural Science Foundation of China (No. 21534009).

The authors thank Prof. Lin Li of Beijing Normal University for his polypropylene microfiltration membranes.

Supplementary material

10118_2019_2310_MOESM1_ESM.pdf (520 kb)
Supplementary material, approximately 228 KB.


  1. 1.
    Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H.; Choi, J. W. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571–1576.CrossRefGoogle Scholar
  2. 2.
    Wang, J.; Liu, J.; Chao, D.; Yan, J.; Lin, J.; Shen, Z. X. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater 2014, 26, 7162–7169.CrossRefGoogle Scholar
  3. 3.
    Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285–309.CrossRefGoogle Scholar
  4. 4.
    Wang, B.; Ryu, J.; Choi, S.; Zhang, X.; Pribat, D.; Li, X.; Zhi, L.; Park, S.; Ruoff, R. S. Ultrafast-charging silicon-based corallike network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 2019, 13, 2307–2315.Google Scholar
  5. 5.
    Li, Z.; Xiong, Y.; Sun, S.; Zhang, L.; Li, S.; Liu, X.; Xu, Z.; Xu, S. Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator. J. Membr. Sci. 2018, 565, 50–60.CrossRefGoogle Scholar
  6. 6.
    Wang, Z.; Xiang, H.; Wang, L.; Xia, R.; Nie, S.; Chen, C.; Wang, H. A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J. Membr. Sci. 2018, 553, 10–16.CrossRefGoogle Scholar
  7. 7.
    Shayapat, J.; Chung, O. H.; Park, J. S. Electrospun polyimidecomposite separator for lithium-ion batteries. Electrochim. Acta 2015, 170, 110–121.CrossRefGoogle Scholar
  8. 8.
    Arora, P.; Zhang, Z. Battery separators. Chem. Rev. 2004, 104, 4419–4462.CrossRefGoogle Scholar
  9. 9.
    Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886.CrossRefGoogle Scholar
  10. 10.
    Jiang, X.; Zhu, X.; Ai, X.; Yang, H.; Cao, Y. Novel ceramicgrafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 25970–25975.CrossRefGoogle Scholar
  11. 11.
    Song, J.; Ryou, M. H.; Son, B.; Lee, J. N.; Lee, D. J.; Lee, Y. M.; Choi, J. W.; Park, J. K. Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochim. Acta 2012, 85, 524–530.CrossRefGoogle Scholar
  12. 12.
    Wu, D.; Deng, L.; Sun, Y.; Teh, K. S.; Shi, C.; Tan, Q.; Zhao, J.; Sun, D.; Lin, L. A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Adv. 2017, 7, 24410–24416.CrossRefGoogle Scholar
  13. 13.
    Li, X.; He, J.; Wu, D.; Zhang, M.; Meng, J.; Ni, P. Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators. Electrochim. Acta 2015, 167, 396–403.CrossRefGoogle Scholar
  14. 14.
    Jeong, K. U.; Chae, H. D.; Lim, C. I.; Lee, H. K.; Ahn, J. H.; Nah, C. Fabrication and characterization of electrolyte membranes based on organoclay/tripropyleneglycol diacrylate/poly- (vinylidene fluoride) electrospun nanofiber composites. Polym. Int. 2010, 59, 249–255.CrossRefGoogle Scholar
  15. 15.
    Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.CrossRefGoogle Scholar
  16. 16.
    Ma, M. Q.; Zhang, C.; Chen, T. T.; Yang, J.; Wang, J. J.; Ji, J.; Xu, Z. K. Bioinspired polydopamine/polyzwitterion coatings for underwater anti-oil and -freezing surfaces. Langmuir 2019, 35, 1895–1901.CrossRefGoogle Scholar
  17. 17.
    Zhang, C.; Lv, Y.; Qiu, W. Z.; He, A.; Xu, Z. K. Polydopamine coatings with nanopores for versatile molecular separation. ACS Appl. Mater. Interfaces 2017, 9, 14437.14444.CrossRefGoogle Scholar
  18. 18.
    Yang, H. C.; Waldman, R. Z.; Wu, M. B.; Hou, J.; Chen, L.; Darling, S. B.; Xu, Z. K. Dopamine: Just the right medicine for membranes. Adv. Funct. Mater. 2018, 28, 1705327.CrossRefGoogle Scholar
  19. 19.
    Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for highpower Li-ion batteries. Adv. Mater. 2011, 23, 3066–3070.CrossRefGoogle Scholar
  20. 20.
    Ryou, M. H.; Lee, D. J.; Lee, J. N.; Lee, Y. M.; Park, J. K.; Choi, J. W. Excellent cycle life of lithium-metal anodes in lithium- ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2012, 2, 645–650.CrossRefGoogle Scholar
  21. 21.
    Cao, C.; Tan, L.; Liu, W.; Ma, J.; Li, L. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J. Power Sources 2014, 248, 224–229.CrossRefGoogle Scholar
  22. 22.
    Wang, H.; Pan, L.; Wu, C.; Gao, D.; Chen, S.; Li, L. Pyrogallic acid coated polypropylene membranes as separators for lithium- ion batteries. J. Mater. Chem. A 2015, 3, 20535–20540.CrossRefGoogle Scholar
  23. 23.
    Pan, L.; Wang, H.; Wu, C.; Liao, C.; Li, L. Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 16003–16010.CrossRefGoogle Scholar
  24. 24.
    Wang, H.; Wu, J.; Cai, C.; Guo, J.; Fan, H.; Zhu, C.; Dong, H.; Zhao, N.; Xu, J. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 5602–5608.CrossRefGoogle Scholar
  25. 25.
    Pi, J. K.; Wu, G. P.; Yang, H. C.; Arges, C. G.; Xu, Z. K. Separators with biomineralized zirconia coatings for enhanced thermo- and electro-performance of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 21971–21978.CrossRefGoogle Scholar
  26. 26.
    Kim, S.; Gim, T.; Kang, S. M. Stability-enhanced polydopamine coatings on solid substrates by iron(III) coordination. Prog. Org. Coat. 2014, 77, 1336–1339.CrossRefGoogle Scholar
  27. 27.
    Zhang, C.; Ou, Y.; Lei, W. X.; Wan, L. S.; Ji, J.; Xu, Z. K. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew. Chem. Int. Ed. 2016, 55, 3054–3057.CrossRefGoogle Scholar
  28. 28.
    Zhang, C.; Li, H. N.; Du, Y.; Ma, M. Q.; Xu, Z. K. CuSO4/H2O2-triggered polydopamine/poly(sulfobetaine methacrylate) coatings for antifouling membrane surfaces. Langmuir 2017, 33, 1210.1216.CrossRefGoogle Scholar
  29. 29.
    Zhang, C.; Wu, M. B.; Wu, B. H.; Yang, J.; Xu, Z. K. Solardriven self-heating sponges for highly efficient crude oil spill remediation. J. Mater. Chem. A 2018, 6, 8880–8885.CrossRefGoogle Scholar
  30. 30.
    Zhang, C.; Yang, H. C.; Wan, L. S.; Liang, H. Q.; Li, H.; Xu, Z. K. Polydopamine-coated porous substrates as a platform for mineralized β-FeOOH nanorods with photocatalysis under sunlight. ACS Appl. Mater. Interfaces 2015, 7, 11567–11574.CrossRefGoogle Scholar
  31. 31.
    Wei, H.; Ren, J.; Han, B.; Xu, L.; Han, L.; Jia, L. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids Surf. B 2013, 110, 22–28.CrossRefGoogle Scholar
  32. 32.
    Kim, J. H.; Kim, J. H.; Kim, J. M.; Lee, Y. G.; Lee, S. Y. Superlattice crystals-mimic, flexible/functional ceramic membranes: Beyond polymeric battery separators. Adv. Energy Mater. 2015, 5, 1500954.CrossRefGoogle Scholar
  33. 33.
    Li, J.; Huang, Y.; Zhang, S.; Jia, W.; Wang, X.; Guo, Y.; Jia, D.; Wang, L. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 7499–7504.CrossRefGoogle Scholar
  34. 34.
    Wang, Z.; Guo, F.; Chen, C.; Shi, L.; Yuan, S.; Sun, L.; Zhu, J. Self-assembly of PEI/SiO2 on polyethylene separators for Li- Ion batteries with enhanced rate capability. ACS Appl. Mater. Interfaces 2015, 7, 3314–3322.CrossRefGoogle Scholar
  35. 35.
    Xiang, Y.; Zhu, W.; Qiu, W.; Guo, W.; Lei, J.; Liu, D.; Qu, D.; Xie, Z.; Tang, H.; Li, J. SnO2 functionalized polyethylene separator with enhanced thermal stability for high performance lithium ion battery. ChemistrySelect 2018, 3, 911–916.CrossRefGoogle Scholar
  36. 36.
    Kang, S. M.; Ryou, M. H.; Choi, J. W.; Lee, H. Mussel- and diatom- inspired silica coating on separators yields improved power and safety in Li-ion batteries. Chem. Mater. 2012, 24, 3481–3485.CrossRefGoogle Scholar
  37. 37.
    Yoo, Y.; Kim, B. G.; Pak, K.; Han, S. J.; Song, H. S.; Choi, J. W.; Im, S. G. Initiated chemical vapor deposition (iCVD) of highly cross-linked polymer films for advanced lithium-ion battery separators. ACS Appl. Mater. Interfaces 2015, 7, 18849–18855.CrossRefGoogle Scholar
  38. 38.
    Zhang, S. S. A review on the separators of liquid electrolyte Liion batteries. J. Power Sources 2007, 164, 351–364.CrossRefGoogle Scholar
  39. 39.
    Yang, H. C.; Liao, K. J.; Huang, H.; Wu, Q. Y.; Wan, L. S.; Xu, Z. K. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J. Mater. Chem. A 2014, 2, 10225–10230.CrossRefGoogle Scholar
  40. 40.
    Avery, N. R.; Black, K. J. Kinetic analysis of capacity fade in lithium/coke half-cells. J. Power Sources 1997, 68, 191–194.CrossRefGoogle Scholar
  41. 41.
    Zhu, G.; Wen, K.; Lv, W.; Zhou, X.; Liang, Y.; Yang, F.; Chen, Z.; Zou, M.; Li, J.; Zhang, Y.; He, W. Materials insights into low-temperature performances of lithium-ion batteries. J. Power Sources 2015, 300, 29.40.CrossRefGoogle Scholar
  42. 42.
    Zhu, X.; Jiang, X.; Ai, X.; Yang, H.; Cao, Y. TiO2 ceramicgrafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J. Membr. Sci. 2016, 504, 97.103.CrossRefGoogle Scholar
  43. 43.
    Feng, G.; Li, Z.; Mi, L.; Zheng, J.; Feng, X.; Chen, W. Polypropylene/ hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J. Power Sources 2018, 376, 177–183.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), and Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations