Advertisement

Non-fullerene Acceptors with a Thieno[3,4-c]pyrrole-4,6-dione (TPD) Core for Efficient Organic Solar Cells

  • Shi-Zhe Geng
  • Wei-Tao Yang
  • Jian Gao
  • Shui-Xing Li
  • Min-Min ShiEmail author
  • Tsz-Ki Lau
  • Xin-Hui Lu
  • Chang-Zhi Li
  • Hong-Zheng ChenEmail author
Article
  • 37 Downloads

Abstract

To achieve the red-shifted absorptions and appropriate energy levels of A-D-A type non-fullerene acceptors (NFAs), in this work, we design and synthesize two new NFAs, named TPDCIC and TPDCNC, whose electron-donating (D) unit is constructed by a thieno[3,4-c]pyrrole-4,6-dione (TPD) core attached to two cyclopentadithiophene (CPDT) moieties at both sides, and the electron-accepting (A) end-groups are 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) and 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b] naphthalen-1-ylidene)malononitrile (NC), respectively. Benefiting from TPD core, which easily forms quinoid structure and O⋯H or O⋯S intramolecular noncovalent interactions, TPDCIC and TPDCNC show more delocalization of π-electrons and perfect planar molecular geometries, giving the absorption ranges extended to 822 and 852 nm, respectively. Furthermore, the highest occupied molecular orbital (HOMO) levels of TPDCIC and TPDCNC remain relatively low-lying due to the electronegativity of the carbonyl groups on TPD core. Considering that the absorptions and energy levels of the two NFAs match well with those of a widely used polymer donor, PBDB-T, we fabricate two kinds of organic solar cells (OSCs) based on the PBDB-T:TPDCIC and PBDB-T:TPDCNC blended films, respectively. Through a series of optimizations, the TPDCIC-based devices yield an impressing power conversion efficiency (PCE) of 10.12% with a large short-circuit current density (JSC) of 18.16 mA·cm−2, and the TPDCNC-based ones exhibit a comparable PCE of 9.80% with a JSC of 17.40 mA·cm−2. Our work is the first report of the TPD-core-based A-D-A type NFAs, providing a good reference for the molecular design of high-performance NFAs.

Keywords

Non-fullerene acceptors (NFAs) Organic solar cells (OSCs) Thieno[3,4-c]pyrrole-4,6-dione (TPD) Narrow bandgap Energy levels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21875216, 21734008) and Zhejiang Province Science and Technology Plan (No. 2018C01047). X. Lu and T. K. Lau acknowledge the financial support from Research Grant Council of Hong Kong (General Research Fund No. 14314216, CUHK Direct Grant No. 4053227).

Supplementary material

10118_2019_2309_MOESM1_ESM.pdf (1.7 mb)
Non-fullerene Acceptors with a Thieno[3,4-c]pyrrole-4,6-dione (TPD) Core for Efficient Organic Solar Cells

References

  1. 1.
    Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; Heeger, A. J.; Marder, S. R.; Zhan, X. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J. Am. Chem. Soc. 2016, 138, 4955–4961.CrossRefGoogle Scholar
  2. 2.
    Li, S.; Liu, W.; Li, C. Z.; Shi, M.; Chen, H. Efficient organic solar cells with non-fullerene acceptors. Small 2017, 13, 1701120.CrossRefGoogle Scholar
  3. 3.
    Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T. P.; Chen, H. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30, 1705208.CrossRefGoogle Scholar
  4. 4.
    Dai, S.; Zhao, F.; Zhang, Q.; Lau, T. K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; Zhan, X. Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 2017, 139, 1336–1343.CrossRefGoogle Scholar
  5. 5.
    Zhang, K.; Liu, X.; Xu, B.; Cui, Y.; Sun, M.; Hou, J. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci. 2017, 35, 219–229.CrossRefGoogle Scholar
  6. 6.
    Wang, S.; Liu, Y.; Yang, J.; Tao, Y.; Guo, Y.; Cao, X.; Zhang, Z.; Li, Y.; Huang, W. Orthogonal solubility in fully conjugated donor-acceptor block copolymers: Compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese J. Polym. Sci. 2017, 35, 207–218.CrossRefGoogle Scholar
  7. 7.
    Li, S.; Zhang, Z.; Shi, M.; Li, C. Z.; Chen, H. Molecular electron acceptors for efficient fullerene-free organic solar cells. Phys. Chem. Chem. Phys. 2017, 19, 3440–3458.CrossRefGoogle Scholar
  8. 8.
    Liu, Y.; Zhang, Z.; Feng, S.; Li, M.; Wu, L.; Hou, R.; Xu, X.; Chen, X.; Bo, Z. Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J. Am. Chem. Soc. 2017, 139, 3356–3359.CrossRefGoogle Scholar
  9. 9.
    Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 2016, 28, 9423–9429.CrossRefGoogle Scholar
  10. 10.
    Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z. G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganas, O.; Li, Y.; Zhan, X. Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv. Mater. 2017, 29, 1604155.CrossRefGoogle Scholar
  11. 11.
    Baran, D.; Kirchartz, T.; Wheeler, S.; Dimitrov, S.; Abdelsamie, M.; Gorman, J.; Ashraf, R. S.; Holliday, S.; Wadsworth, A.; Gasparini, N.; Kaienburg, P.; Yan, H.; Amassian, A.; Brabec, C. J.; Durrant, J. R.; McCulloch, I. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with > 1 V open circuit voltages. Energy Environ. Sci. 2016, 9, 3783–3793.CrossRefGoogle Scholar
  12. 12.
    Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; Chen, Y. Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J. Am. Chem. Soc. 2017, 139, 4929–4934.CrossRefGoogle Scholar
  13. 13.
    Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.CrossRefGoogle Scholar
  14. 14.
    Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1–12.CrossRefGoogle Scholar
  15. 15.
    Chen, H. Electron-deficient core fused-ring based non-fullerene acceptor enables over 15% efficiency in single junction organic solar cells. Sci. China Chem. 2019, 62, 403–404.CrossRefGoogle Scholar
  16. 16.
    Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem. 2019, 62, 746–752.CrossRefGoogle Scholar
  17. 17.
    Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H. L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098.CrossRefGoogle Scholar
  18. 18.
    Zhu, J.; Ke, Z.; Zhang, Q.; Wang, J.; Dai, S.; Wu, Y.; Xu, Y.; Lin, Y.; Ma, W.; You, W.; Zhan, X. Naphthodithiophene-based nonfullerene acceptor for high-performance organic photovoltaics: Effect of extended conjugation. Adv. Mater. 2018, 30, 1704713.CrossRefGoogle Scholar
  19. 19.
    Li, W.; Ye, L.; Li, S.; Yao, H.; Ade, H.; Hou, J. A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor. Adv. Mater. 2018, 30, 1707170.CrossRefGoogle Scholar
  20. 20.
    Li, S.; Zhan, L.; Sun, C.; Zhu, H.; Zhou, G.; Yang, W.; Shi, M.; Li, C. Z.; Hou, J.; Li, Y.; Chen, H. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc. 2019, 141, 3073–3082.CrossRefGoogle Scholar
  21. 21.
    Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, C.; Lau, T. K.; Zhang, G.; Lu, X.; Yip, H. L.; So, S. K.; Beaupre, S.; Mainville, M.; Johnson, P. A.; Leclerc, M.; Chen, H.; Peng, H.; Li, Y.; Zou, Y. Fused benzothiadiazole: A building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv. Mater. 2019, 31, 1807577.CrossRefGoogle Scholar
  22. 22.
    Yuan, J.; Huang, T.; Cheng, P.; Zou, Y.; Zhang, H.; Yang, J. L.; Chang, S. Y.; Zhang, Z.; Huang, W.; Wang, R.; Meng, D.; Gao, F.; Yang, Y. Enabling low voltage losses and high photo-current in fullerene-free organic photovoltaics. Nat. Commun. 2019, 10, 570.CrossRefGoogle Scholar
  23. 23.
    Li, S.; Liu, W.; Shi, M.; Mai, J.; Lau, T. K.; Wan, J.; Lu, X.; Li, C. Z.; Chen, H. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy Environ. Sci. 2016, 9, 604–610.CrossRefGoogle Scholar
  24. 24.
    Chen, C. A.; Yang, P. C.; Wang, S. C.; Tung, S. H.; Su, W. F. Side chain effects on the optoelectronic properties and self-assembly behaviors of terthiophene-thieno[3,4-c]pyrrole-4,6-di-one based conjugated polymers. Macromolecules 2018, 51, 7828–7835.CrossRefGoogle Scholar
  25. 25.
    Guo, X.; Zhou, N.; Lou, S. J.; Hennek, J. W.; Ponce Ortiz, R.; Butler, M. R.; Boudreault, P. L.; Strzalka, J.; Morin, P. O.; Leclerc, M.; Lopez Navarrete, J. T.; Ratner, M. A.; Chen, L. X.; Chang, R. P.; Facchetti, A.; Marks, T. J. Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure-property-device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues. J. Am. Chem. Soc. 2012, 134, 18427–18439.CrossRefGoogle Scholar
  26. 26.
    Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D. Phthalimide-based polymers for high performance organic thin-film transistors. J. Am. Chem. Soc. 2009, 131, 7206–7207.CrossRefGoogle Scholar
  27. 27.
    Chu, T. Y.; Lu, J.; Beaupre, S.; Zhang, Y.; Pouliot, J. R.; Zhou, J.; Najari, A.; Leclerc, M.; Tao, Y. Effects of the molecular weight and the side-chain length on the photovoltaic performance of dithienosilole/thienopyrrolodione copolymers. Adv. Funct. Mater. 2012, 22, 2345–2351.CrossRefGoogle Scholar
  28. 28.
    Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. N-channel polymers by design: Optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. J. Am. Chem. Soc. 2008, 130, 9679–9694.CrossRefGoogle Scholar
  29. 29.
    Najari, A.; Beaupre, S.; Berrouard, P.; Zou, Y.; Pouliot, J. R.; Lepage-Perusse, C.; Leclerc, M. Synthesis and characterization of new thieno[3,4-c]pyrrole-4,6-dione derivatives for photovoltaic applications. Adv. Funct. Mater. 2011, 21, 718–728.CrossRefGoogle Scholar
  30. 30.
    Li, Z.; Tsang, S. W.; Du, X.; Scoles, L.; Robertson, G.; Zhang, Y.; Toll, F.; Tao, Y.; Lu, J.; Ding, J. Alternating copolymers of cyclopenta[2,1-b;3,4-b’] dithiophene and thieno[3,4-c]pyrrole-4,6-dione for high-performance polymer solar cells. Adv. Funct. Mater. 2011, 21, 3331–3336.CrossRefGoogle Scholar
  31. 31.
    Li, S.; Ye, L.; Zhao, W.; Liu, X.; Zhu, J.; Ade, H.; Hou, J. Design of a new small-molecule electron acceptor enables efficient polymer solar cells with high fill factor. Adv. Mater. 2017, 29, 1704051.CrossRefGoogle Scholar
  32. 32.
    Wang, N.; Zhan, L.; Li, S.; Shi, M.; Lau, T. K.; Lu, X.; Shikler, R.; Li, C. Z.; Chen, H. Enhancement of intra- and inter-molecular π-conjugated effects for a non-fullerene acceptor to achieve high-efficiency organic solar cells with an extended photoresponse range and optimized morphology. Mater. Chem. Front. 2018, 2, 2006–2012.CrossRefGoogle Scholar
  33. 33.
    Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739.CrossRefGoogle Scholar
  34. 34.
    Zhao, W.; Li, S.; Zhang, S.; Liu, X.; Hou, J. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Adv. Mater. 2017, 29, 1604059.CrossRefGoogle Scholar
  35. 35.
    Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K. Bulk-heterojunction organic solar cells: Five core technologies for their commercialization. Adv. Mater. 2016, 28, 7821–7861.CrossRefGoogle Scholar
  36. 36.
    Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 2016, 7, 13740.CrossRefGoogle Scholar
  37. 37.
    Li, S.; Zhan, L.; Zhao, W.; Zhang, S.; Ali, B.; Fu, Z.; Lau, T. K.; Lu, X.; Shi, M.; Li, C. Z.; Hou, J.; Chen, H. Revealing the effects of molecular packing on the performances of polymer solar cells based on A-D-C-D-A type non-fullerene acceptors. J. Mater. Chem. A 2018, 6, 12132–12141.CrossRefGoogle Scholar
  38. 38.
    Yuan, L.; Lu, K.; Xia, B.; Zhang, J.; Wang, Z.; Wang, Z.; Deng, D.; Fang, J.; Zhu, L.; Wei, Z. Acceptor end-capped oligomeric conjugated molecules with broadened absorption and enhanced extinction coefficients for high-efficiency organic solar cells. Adv. Mater. 2016, 28, 5980–5985.CrossRefGoogle Scholar
  39. 39.
    Zhan, L.; Li, S.; Zhang, H.; Gao, F.; Lau, T. K.; Lu, X.; Sun, D.; Wang, P.; Shi, M.; Li, C. Z.; Chen, H. A near-infrared photoactive morphology modifier leads to significant current improvement and energy loss mitigation for ternary organic solar cells. Adv. Sci. 2018, 5, 1800755.CrossRefGoogle Scholar
  40. 40.
    Zheng, Z.; Awartani, O. M.; Gautam, B.; Liu, D.; Qin, Y.; Li, W.; Bataller, A.; Gundogdu, K.; Ade, H.; Hou, J. Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene-free organic solar cell with 11.3% efficiency. Adv. Mater. 2017, 29, 1604241.CrossRefGoogle Scholar
  41. 41.
    Fan, B.; Zhang, K.; Jiang, X. F.; Ying, L.; Huang, F.; Cao, Y. High-performance nonfullerene polymer solar cells based on imide-functionalized wide-bandgap polymers. Adv. Mater. 2017, 29, 1606396.CrossRefGoogle Scholar
  42. 42.
    Mai, J.; Xiao, Y.; Zhou, G.; Wang, J.; Zhu, J.; Zhao, N.; Zhan, X.; Lu, X. Hidden structure ordering along backbone of fused-ring electron acceptors enhanced by ternary bulk heterojunction. Adv. Mater. 2018, 30, 1802888.CrossRefGoogle Scholar
  43. 43.
    Mai, J.; Lau, T. K.; Li, J.; Peng, S. H.; Hsu, C. S.; Jeng, U. S.; Zeng, J.; Zhao, N.; Xiao, X.; Lu, X. Understanding morphology compatibility for high-performance ternary organic solar cells. Chem. Mater. 2016, 28, 6186–6195.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shi-Zhe Geng
    • 1
  • Wei-Tao Yang
    • 1
  • Jian Gao
    • 1
  • Shui-Xing Li
    • 1
  • Min-Min Shi
    • 1
    Email author
  • Tsz-Ki Lau
    • 2
  • Xin-Hui Lu
    • 2
  • Chang-Zhi Li
    • 1
  • Hong-Zheng Chen
    • 1
    Email author
  1. 1.Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), State Key Laboratory of Silicon Materials, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of PhysicsThe Chinese University of Hong KongNew Territories, Hong KongChina

Personalised recommendations