Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications

  • Serife O. HaciogluEmail author


In this study, novel electrochromic copolymers of 3,4-ethylenedioxythiophene (EDOT) and (E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2- yl)phenyl)diazene (M1) with different monomer feed ratios were designed and synthesized electrochemically. Electrochemical and spectroelectrochemical characterizations were performed using voltammetry and UV-Vis-NIR spectrophotometry techniques to test the applicability of copolymers for electrochromic applications. In terms of electrochemical behaviors, addition of an electron-rich EDOT unit into the azobenzenecontaining copolymer increased the electron density on the polymer chain and afforded copolymers with very low oxidation potentials at around 0.30 V. While the homopolymers (P1 and PEDOT) exhibited neutral state absorptions centered at 510 and 583 nm, EDOT-bearing copolymers showed red shifted absorptions compared to those of P1 with narrower optical band gaps. In addition, the poor optical contrast and switching times of azobenzene-bearing homopolymer were significantly improved with EDOT addition into the copolymer chain. As a result of the promising electrochromic and kinetic preperties, CoP1.5-bearing single layer electrochromic device that works between purple and light greenish blue colors was constructed and characterized.


Azobenzene EDOT Copolymerization Electrochromic device 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I would like to thank and appreciate Prof. Dr. Levent Toppare (Department of Chemistry, Middle East Technical University, Turkey) for his guidance and support for my academic carrier.


  1. 1.
    Cheng, X.; Fu, Y.; Zhao, J.; Zhang, Y. Polyaniline with high crystallinity degree: Synthesis, structure, and electrochemical properties. J. Appl. Polym. Sci. 2014, 131, 39770–39777.Google Scholar
  2. 2.
    Cansu-Ergun, E. G. Covering the more visible region by electrochemical copolymerization of carbazole and benzothiadiazole based donor-acceptor type monomers. Chinese J. Polym. Sci. 2019, 37, 28–35.CrossRefGoogle Scholar
  3. 3.
    Guo, B.; Li, W.; Guo, X.; Meng, X.; Ma, W.; Zhang, M.; Li, Y. High efficiency nonfullerene polymer solar cells with thick active layer and large area. Adv. Mater. 2017, 29, 1702291–1702297.CrossRefGoogle Scholar
  4. 4.
    Azeri, O.; Aktas, E.; Istanbulluoglu, C.; Hacioglu, S. O.; Cevher, S. C.; Toppare, L.; Cirpan, A. Efficient benzodithiophene and thienopyrroledione containing random polymers as components for organic solar cells. Polymer 2017, 133, 60–67.CrossRefGoogle Scholar
  5. 5.
    Kamtekar, K. J.; Vaughan, H. L.; Lyons, B. P.; Monkman, A. P.; Pandya, S. U.; Bryce, M. R. Synthesis and spectroscopy of poly(9,9-dioctylfluorene-2,7-diyl-co-2,8-dihexyldibenzothiophene-S,Sdioxide-3,7-diyl)s: Solution-processable, deep-blue emitters with a high triplet energy. Macromolecules, 2010, 43, 4481–4488.CrossRefGoogle Scholar
  6. 6.
    Lee, K.; Povlich, L. K.; Kim, J. Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst 2010, 135, 2179–2189.CrossRefGoogle Scholar
  7. 7.
    Soylemez, S.; Hacioglu, S. O.; Kesik, M.; Unay, H.; Cirpan, A.; Toppare, L. A novel and effective surface design: Conducting polymer/β-cyclodextrin host-guest system for cholesterol biosensor. ACS Appl. Mater. Interfaces 2014, 6, 18290–18300.CrossRefGoogle Scholar
  8. 8.
    Thompson, B. C.; Schottland, P.; Zong, K.; Reynolds, J. R. In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater. 2000, 12, 1563–1571.CrossRefGoogle Scholar
  9. 9.
    Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater. 1998, 10, 2101–2108.CrossRefGoogle Scholar
  10. 10.
    Yoo, S. J.; Cho, J. H.; Lim, J. W.; Park, S. H.; Jang, J.; Sung, Y. E. High contrast ratio and fast switching polymeric electrochromic films based on water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles. Electrochem. Commun. 2010, 12, 164–167.CrossRefGoogle Scholar
  11. 11.
    Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Jost, R. W.; Rubin, Y.; Wudl, F. A processable green polymeric electrochromic. Macromolecules 2005, 38, 669–675.CrossRefGoogle Scholar
  12. 12.
    Roncali, J. Molecular engineering of the band gap of π-conjugated systems: Facing technological applications. Macromol. Rapid Commun. 2007, 28, 1761–1775.CrossRefGoogle Scholar
  13. 13.
    Gunbas, G.; Toppare, L. Green as it gets; Donor-acceptor type polymers as the key to realization of RGB based polymer display devices. Macromol. Symp. 2010, 297, 79–86.CrossRefGoogle Scholar
  14. 14.
    Nie, G.; Qu, L.; Xu, J. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochim. Acta 2008, 53, 8351–8358.CrossRefGoogle Scholar
  15. 15.
    Han, R.; Lu, S.; Wang, Y.; Zhang, X.; Wu, Q.; He, T. Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells. Electrochim. Acta 2015, 173, 796–803.CrossRefGoogle Scholar
  16. 16.
    Wang, Z.; Xu, J.; Lu, B.; Zhang, S.; Qin, L.; Mo, D.; Zhen, S. Poly(thieno[3,4-b]-1,4-oxathiane): Medium effect on electropolymerization and electrochromic performance. Langmuir 2014, 30, 15581–15589.CrossRefGoogle Scholar
  17. 17.
    Liu, X.; Hu, Y.; Shen, L.; Zhang, G.; Cao, T.; Xu, J.; Zhao, F.; Hou, J.; Liu, H.; Jiang, F. Novel copolymers based on PEO bridged thiophenes and 3,4-ethylenedioxythiophene: Electrochemical, optical, and electrochromic properties. Electrochim. Acta 2018, 288, 52–60.CrossRefGoogle Scholar
  18. 18.
    Hu, Y.; Jiang, F.; Lu, B.; Liu, C.; Hou, J.; Xu, J. Free-standing oligo(oxyethylene)-functionalized polythiophene withthe 3,4-ethylenedioxythiophene building block: Electrosynthesis, electrochromic and thermoelectric properties. Electrochim. Acta 2017, 228, 361–370.CrossRefGoogle Scholar
  19. 19.
    Hu, Y.; Wang, Z.; Lin, K.; Xu, J.; Duan, X.; Zhao, F.; Hou, J.; Jiang, F. Electrosynthesis and electrochromic properties of free-standing copolymer based on oligo(oxyethylene) cross-linked 2,2′-bithiophene and 3,4-ethylenedioxythiophene. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1583–1592.CrossRefGoogle Scholar
  20. 20.
    He, L.; Freeman, H. S.; Nakpathom, M.; Boyle, P. D. Synthesis and X-ray analysis of a perfluoroalkyl-substituted azobenzene dye. Dyes Pigments 2015, 120, 245–250.CrossRefGoogle Scholar
  21. 21.
    Gong, C. B.; He, L. H.; Long, J. F.; Liu, L. T.; Liu, S.; Tang, Q.; Fu, X. K. Synthesis and characterisation of azobenzene-bridged cationiccationic and neutral-cationic electrochromic materials. Synthetic Met. 2016, 220, 147–154.CrossRefGoogle Scholar
  22. 22.
    Ferreira, J.; Santos, M. J. L.; Matos, R.; Ferreira, O. P.; Rubira, A. F.; Girotto, E. M. Structural and electrochromic study of polypyrrole synthesized with azo and anthraquinone dyes. J. Electroanal. Chem. 2006, 591, 27–32.CrossRefGoogle Scholar
  23. 23.
    Pei, X.; Fernandes, A.; Mathy, B.; Laloyaux, X.; Nysten, B.; Riant, O.; Jonas, A. M. Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on silicon. Langmuir 2011, 27, 9403–9412.CrossRefGoogle Scholar
  24. 24.
    Apaydin, D. H.; Akpinar, H.; Sendur, M.; Toppare, L. Electrochromism in multichromic conjugated polymers: Thiophene and azobenzene derivatives on the main chain. J. Electroanal. Chem. 2012, 665, 52–57.CrossRefGoogle Scholar
  25. 25.
    Yigit, D.; Udum, Y. A.; Güllü, M.; Toppare, L. Electrochemical and optical properties of novel terthienyl based azobenzene, coumarine and fluorescein containing polymers: Multicolored electrochromic polymers. J. Electroanal. Chem. 2014, 712, 215–222.CrossRefGoogle Scholar
  26. 26.
    Yagmur, I.; Ak, M.; Bayrakceken, A. Fabricating multicolored electrochromic devices using conducting copolymers. Smart Mater. Struct. 2013, 22, 115022–115030.CrossRefGoogle Scholar
  27. 27.
    Soganci, T.; Kurtay, G.; Ak, M.; Güllü, M. Preparation of an EDOT-based polymer: Optoelectronic properties and electrochromic device application. RSC Adv. 2014, 5, 2630–2639.CrossRefGoogle Scholar
  28. 28.
    De Paoli, M. A.; Gazotti, W. A. Electrochemistry, polymers and opto-electronic devices: A combination with a future. J. Braz. Chem. Soc. 2002, 13, 410–424.CrossRefGoogle Scholar
  29. 29.
    Camurlu P.; Gultekin, C. A comprehensive study on utilization of N-substituted poly(2,5-dithienylpyrrole) derivatives in electrochromic devices. Sol. Energy Mater. Sol. Cells 2012, 107, 142–147.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering ScienceIskenderun Technical UniversityHatayTurkey

Personalised recommendations