Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly

  • Shou-Kuo Man
  • Xiao WangEmail author
  • Jin-Wen Zheng
  • Ze-Sheng AnEmail author


Polymerization-induced self-assembly (PISA) is an efficient and versatile method to afford polymeric nano-objects with polymorphic morphologies. Compared to dispersion PISA syntheses based on soluble monomers, the vast majority of emulsion PISA formulations using insoluble monomers leads to kinetically-trapped spheres. Herein, we present aqueous emulsion PISA formulations generating worms and vesicles besides spheres. Two monomers with different butyl groups, n-butyl (nBHMA) and tert-butyl (tBHMA) α-hydroxymethyl acrylate, and thus possessing different water solubilities were synthesized via Baylis-Hillman reaction. Photoinitiated aqueous emulsion polymerizations of nBHMA and tBHMA employing poly(ethylene glycol) macromolecular chain transfer agents (macro-CTAs, PEG45-CTA, and PEG113-CTA) at 40 °C were systematically investigated to evaluate the effect of monomer structure and solubility on the morphology of the generated block copolymer nano-objects. Higher order morphologies including worms and vesicles were readily accessed for tBHMA, which has a higher water solubility than that of nBHMA. This study proves that plasticization of the core-forming block by water plays a key role in enhancing chain mobility required for morphological transition in emulsion PISA.


Block copolymer α-Hydroxymethyl acrylate RAFT emulsion polymerization Polymerization-induced self-assembly 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2019_2303_MOESM1_ESM.pdf (1.2 mb)
Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly


  1. 1.
    Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Formation of hexagonally packed hollow hoops and morphology transition in RAFT ethanol dispersion polymerization. Macromol. Rapid Commun. 2015, 36, 1428–1436.Google Scholar
  2. 2.
    Gao, P.; Cao, H.; Ding, Y.; Cai, M.; Cui, Z.; Lu, X.; Cai, Y. Synthesis of hydrogen-bonded pore-switchable cylindrical vesicles via visible-light-mediated RAFT room-temperature aqueous dispersion polymerization. ACS Macro Lett. 2016, 5, 1327–1331.CrossRefGoogle Scholar
  3. 3.
    Li, Y.; Armes, S. P. RAFT synthesis of sterically stabilized methacrylic nanolatexes and vesicles by aqueous dispersion polymerization. Angew. Chem. Int. Ed. 2010, 49, 4042–6.CrossRefGoogle Scholar
  4. 4.
    Zhou, W.; Qu, Q.; Xu, Y.; An, Z. Aqueous polymerization-induced self-assembly for the synthesis of ketone-functionalized nanoobjects with low polydispersity. ACS Macro Lett. 2015, 4, 495–499.CrossRefGoogle Scholar
  5. 5.
    Canning, S. L.; Smith, G. N.; Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 2016, 49, 1985–2001.CrossRefGoogle Scholar
  6. 6.
    Warren, N. J.; Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 2014, 136, 10174–10185.CrossRefGoogle Scholar
  7. 7.
    Huo, M.; Zhang, Y.; Zeng, M.; Liu, L.; Wei, Y.; Yuan, J. Morphology evolution of polymeric assemblies regulated with fluoro-containing mesogen in polymerization-induced self-assembly. Macromolecules 2017, 50, 8192–8201.CrossRefGoogle Scholar
  8. 8.
    Guan, S.; Zhang, C.; Wen, W.; Qu, T.; Zheng, X.; Zhao, Y.; Chen, A. Formation of anisotropic liquid crystalline nanoparticles via polymerization-induced hierarchical self-assembly. ACS Macro Lett. 2018, 7, 358–363.CrossRefGoogle Scholar
  9. 9.
    Wang, X.; Shen, L.; An, Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog. Polym. Sci. 2018, 83, 1–27.CrossRefGoogle Scholar
  10. 10.
    Wang, X.; An, Z. New insights into RAFT dispersion polymerization-induced self-assembly: From monomer library, morphological control, and stability to driving forces. Macromol. Rapid Commun. 2019, 40, 1800325.CrossRefGoogle Scholar
  11. 11.
    Derry, M. J.; Fielding, L. A.; Armes, S. P. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog. Polym. Sci. 2016, 52, 1–18.CrossRefGoogle Scholar
  12. 12.
    Shi, P.; Zhou, H.; Gao, C.; Wang, S.; Sun, P.; Zhang, W. Macro-RAFT agent mediated dispersion copolymerization: A small amount of solvophilic co-monomer leads to a great change. Polym. Chem. 2015, 6, 4911–4920.CrossRefGoogle Scholar
  13. 13.
    Figg, C. A.; Simula, A.; Gebre, K. A.; Tucker, B. S.; Haddleton, D. M.; Sumerlin, B. S. Polymerization-induced thermal self-assembly (PITSA). Chem. Sci. 2015, 6, 1230–1236.CrossRefGoogle Scholar
  14. 14.
    Sugihara, S.; Ma’Radzi, A. H.; Ida, S.; Irie, S.; Kikukawa, T.; Maeda, Y. In situ nano-objects via RAFT aqueous dispersion polymerization of 2-methoxyethyl acrylate using poly(ethylene oxide) macromolecular chain transfer agent as steric stabilizer. Polymer 2015, 76, 17–24.CrossRefGoogle Scholar
  15. 15.
    Chen, S. L.; Shi, P. F.; Zhang, W. Q. In situ synthesis of block copolymer nano-assemblies by polymerization-induced self-assembly under heterogeneous condition. Chinese J. Polym. Sci. 2017, 35, 455–455.CrossRefGoogle Scholar
  16. 16.
    Wan, W. M.; Hong, C. Y.; Pan, C. Y. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chem. Commun. 2009, 5883.Google Scholar
  17. 17.
    Wan, W. M.; Pan, C. Y. One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly and re-organization. Polym. Chem. 2010, 1, 1475–1484.CrossRefGoogle Scholar
  18. 18.
    Tritschler, U.; Pearce, S.; Gwyther, J.; Whittell, G. R.; Manners, I. 50th Anniversary perspective: Functional nanoparticles from the solution self-assembly of block copolymers. Macromolecules 2017, 50, 3439–3463.CrossRefGoogle Scholar
  19. 19.
    Zhang, W.; D’Agosto, F.; Boyron, O.; Rieger, J.; Charleux, B. Toward a better understanding of the parameters that lead to the formation of nonspherical polystyrene particles via RAFT-mediated one-pot aqueous emulsion polymerization. Macromolecules 2012, 45, 4075–4084.CrossRefGoogle Scholar
  20. 20.
    Zhang, B.; Lv, X.; An, Z. Modular monomers with tunable solubility: Synthesis of highly incompatible block copolymer nano-objects via RAFT aqueous dispersion polymerization. ACS Macro Lett. 2017, 6, 224–228.CrossRefGoogle Scholar
  21. 21.
    Wang, X.; Man, S.; Zheng, J.; An, Z. Alkyl α-hydroxymethyl acrylate monomers for aqueous dispersion polymerization-induced selfassembly. ACS Macro Lett. 2018, 7, 1461–1467.CrossRefGoogle Scholar
  22. 22.
    Yu, Q.; Ding, Y.; Cao, H.; Lu, X.; Cai, Y. Use of polyion complexation for polymerization-induced self-assembly in water under visible light irradiation at 25 °C. Acs Macro Lett. 2015, 4, 1293–1296.CrossRefGoogle Scholar
  23. 23.
    Ding, Y.; Cai, M.; Cui, Z.; Huang, L.; Wang, L.; Lu, X.; Cai, Y. Synthesis of low-dimensional polyion complex nanomaterials via polymerization-induced electrostatic self-assembly. Angew. Chem. Int. Ed. 2018, 57, 1053–1056.CrossRefGoogle Scholar
  24. 24.
    Cai, M.; Ding, Y.; Wang, L.; Huang, L.; Lu, X.; Cai, Y. Synthesis of one-component nanostructured polyion complexes via polymerization-induced electrostatic self-assembly. ACS Macro Lett. 2018, 7, 208–212.CrossRefGoogle Scholar
  25. 25.
    Chen, X.; Liu, L.; Huo, M.; Zeng, M.; Peng, L.; Feng, A.; Wang, X.; Yuan, J. Direct synthesis of polymer nanotubes by aqueous dispersion polymerization of a cyclodextrin/styrene complex. Angew. Chem. Int. Ed. 2017, 56, 16541–16545.CrossRefGoogle Scholar
  26. 26.
    Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A. J.; Armes, S. P. Mechanistic insights for block copolymer morphologies: How do worms form vesicles? J. Am. Chem. Soc. 2011, 133, 16581–7.CrossRefGoogle Scholar
  27. 27.
    Shen, L.; Guo, H.; Zheng, J.; Wang, X.; Yang, Y.; An, Z. RAFT Polymerization-induced self-assembly as a strategy for versatile synthesis of semifluorinated liquid-crystalline block copolymer nanoobjects. ACS Macro Lett. 2018, 7, 287–292.CrossRefGoogle Scholar
  28. 28.
    Chambon, P.; Blanazs, A.; Battaglia, G.; Armes, S. P. Facile synthesis of methacrylic ABC triblock copolymer vesicles by RAFT aqueous dispersion polymerization. Macromolecules 2012, 45, 5081–5090.CrossRefGoogle Scholar
  29. 29.
    Huo, M.; Zeng, M.; Li, D.; Liu, L.; Wei, Y.; Yuan, J. Tailoring the multicompartment nanostructures of fluoro-containing ABC triblock terpolymer assemblies via polymerization-induced self-assembly. Macromolecules 2017, 50, 8212–8220.CrossRefGoogle Scholar
  30. 30.
    Gao, C.; Wu, J.; Zhou, H.; Qu, Y.; Li, B.; Zhang, W. Self-assembled blends of AB/BAB block copolymers prepared through dispersion RAFT polymerization. Macromolecules 2016, 49, 4490–4500.CrossRefGoogle Scholar
  31. 31.
    Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Fabrication of spaced concentric vesicles and polymerizations in RAFT dispersion polymerization. Macromolecules 2014, 47, 1664–1671.CrossRefGoogle Scholar
  32. 32.
    Gao, C.; Zhou, H.; Qu, Y.; Wang, W.; Khan, H.; Zhang, W. In situ synthesis of block copolymer nanoassemblies via polymerization-induced self-assembly in poly(ethylene glycol). Macromolecules 2016, 49, 3789–3798.CrossRefGoogle Scholar
  33. 33.
    Lowe, A. B. RAFT alcoholic dispersion polymerization with polymerization-induced self-assembly. Polymer 2016, 106, 161–181.CrossRefGoogle Scholar
  34. 34.
    Huo, M.; Li, D.; Song, G.; Zhang, J.; Wu, D.; Wei, Y.; Yuan, J. Semifluorinated methacrylates: A class of versatile monomers for polymerization-induced self-assembly. Macromol. Rapid Commun. 2018, 39, 1700840.Google Scholar
  35. 35.
    Semsarilar, M.; Penfold, N.; Jones, E. R.; Armes, S. P. Semicrystalline diblock copolymer nano-objects prepared via RAFT alcoholic dispersion polymerization of stearyl methacrylate. Polym. Chem. 2015, 6, 1751–1757.CrossRefGoogle Scholar
  36. 36.
    Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat. Chem. 2017, 9, 785–792.CrossRefGoogle Scholar
  37. 37.
    Zeng, M.; Huo, M.; Feng, Y.; Yuan, J. CO2-breathing polymer assemblies via one-pot sequential RAFT dispersion polymerization. Macromol. Rapid Commun. 2018, 39, 1800291.CrossRefGoogle Scholar
  38. 38.
    Blanazs, A.; Verber, R.; Mykhaylyk, O. O.; Ryan, A. J.; Heath, J. Z.; Douglas, C. W. I.; Armes, S. P. Sterilizable gels from thermoresponsive block copolymer worms. J. Am. Chem. Soc. 2012, 134, 9741–9748.CrossRefGoogle Scholar
  39. 39.
    Yao, H.; Ning, Y.; Jesson, C. P.; He, J.; Deng, R.; Tian, W.; Armes, S. P. Using host-guest chemistry to tune the kinetics of morphological transitions undertaken by block copolymer vesicles. ACS Macro Lett. 2017, 6, 1379–1385.CrossRefGoogle Scholar
  40. 40.
    Deng, R.; Derry, M. J.; Mable, C. J.; Ning, Y.; Armes, S. P. Using dynamic covalent chemistry to drive morphological transitions: Controlled release of encapsulated nanoparticles from block copolymer vesicles. J. Am. Chem. Soc. 2017, 139, 7616–7623.CrossRefGoogle Scholar
  41. 41.
    Canning, S. L.; Neal, T. J.; Armes, S. P. pH-responsive schizophrenic diblock copolymers prepared by polymerization-induced self-assembly. Macromolecules 2017, 50, 6108–6116.CrossRefGoogle Scholar
  42. 42.
    Penfold, N. J. W.; Lovett, J. R.; Warren, N. J.; Verstraete, P.; Smets, J.; Armes, S. P. pH-Responsive non-ionic diblock copolymers: Protonation of a morpholine end-group induces an order-order transition. Polym. Chem. 2016, 7, 79–88.CrossRefGoogle Scholar
  43. 43.
    Wang, X.; Zhou, J.; Lv, X.; Zhang, B.; An, Z. Temperature-induced morphological transitions of poly(dimethylacrylamide)-poly(diacetone acrylamide) block copolymer lamellae synthesized via aqueous polymerization-induced self-assembly. Macromolecules 2017, 50, 7222–7232.CrossRefGoogle Scholar
  44. 44.
    Tan, J.; Zhang, X.; Liu, D.; Bai, Y.; Huang, C.; Li, X.; Zhang, L. Facile preparation of CO2-responsive polymer nano-objects via aqueous photoinitiated polymerization-induced self-assembly (photo-PISA). Macromol. Rapid Commun. 2017, 38, 1600508.CrossRefGoogle Scholar
  45. 45.
    Zhang, B.; Lv, X.; Zhu, A.; Zheng, J.; Yang, Y.; An, Z. Morphological stabilization of block copolymer worms using asymmetric cross-linkers during polymerization-induced self-assembly. Macromolecules 2018, 51, 2776–2784.CrossRefGoogle Scholar
  46. 46.
    Lv, F.; An, Z.; Wu, P. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nat. Commun. 2019, 10, 1397.CrossRefGoogle Scholar
  47. 47.
    Truong, N. P.; Dussert, M. V.; Whittaker, M. R.; Quinn, J. F.; Davis, T. P. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym. Chem. 2015, 6, 3865–3874.CrossRefGoogle Scholar
  48. 48.
    Perrier, S. 50th Anniversary perspective: RAFT polymerization—A user guide. Macromolecules 2017, 50, 7433–7447.CrossRefGoogle Scholar
  49. 49.
    Cunningham, V. J.; Alswieleh, A. M.; Thompson, K. L.; Williams, M.; Leggett, G. J.; Armes, S. P.; Musa, O. M. Poly(glycerol monomethacrylate)-poly(benzyl methacrylate) diblock copolymer nanoparticles via RAFT emulsion polymerization: Synthesis, characterization, and interfacial activity. Macromolecules 2014, 47, 5613–5623.CrossRefGoogle Scholar
  50. 50.
    Rieger, J.; Zhang, W.; Stoffelbach, F.; Charleux, B. Surfactant-free RAFT emulsion polymerization using poly(N,N-dimethylacrylamide) trithiocarbonate macromolecular chain transfer agents. Macromolecules 2010, 43, 6302–6310.CrossRefGoogle Scholar
  51. 51.
    Chaduc, I.; Girod, M.; Antoine, R.; Charleux, B.; D’Agosto, F.; Lansalot, M. Batch emulsion polymerization mediated by poly(methacrylic acid) macro-RAFT agents: One-pot synthesis of self-stabilized particles. Macromolecules 2012, 45, 5881–5893.CrossRefGoogle Scholar
  52. 52.
    Chaduc, I.; Crepet, A.; Boyron, O.; Charleux, B.; D’Agosto, F.; Lansalot, M. Effect of the pH on the RAFT polymerization of acrylic acid in water. Application to the synthesis of poly(acrylic acid)-stabilized polystyrene particles by RAFT emulsion polymerization. Macromolecules 2013, 46, 6013–6023.CrossRefGoogle Scholar
  53. 53.
    Song, Y. K.; Truong, N. P.; Quinn, J. F.; Whittaker, M. R.; Davis, T. P. Polymerization-induced self-assembly: The effect of end group and initiator concentration on morphology of nanoparticles prepared via RAFT aqueous emulsion polymerization. ACS Macro Lett. 2017, 6, 1013–1019.CrossRefGoogle Scholar
  54. 54.
    Lesage de la Haye, J.; Zhang, X.; Chaduc, I.; Brunel, F.; Lansalot, M.; D’Agosto, F. The effect of hydrophile topology in RAFT-mediated polymerization-induced self-assembly. Angew. Chem. Int. Ed. 2016, 55, 3739–3743.CrossRefGoogle Scholar
  55. 55.
    Boissé, S.; Rieger, J.; Belal, K.; Di-Cicco, A.; Beaunier, P.; Li, M. H.; Charleux, B. Amphiphilic block copolymer nano-fibers via RAFT-mediated polymerization in aqueous dispersed system. Chem. Commun. 2010, 46, 1950–1952.CrossRefGoogle Scholar
  56. 56.
    Cockram, A. A.; Neal, T. J.; Derry, M. J.; Mykhaylyk, O. O.; Williams, N. S.; Murray, M. W.; Emmett, S. N.; Armes, S. P. Effect of monomer solubility on the evolution of copolymer morphology during polymerization-induced self-assembly in aqueous solution. Macromolecules 2017, 50, 796–802.CrossRefGoogle Scholar
  57. 57.
    Tan, J.; Dai, X.; Zhang, Y.; Yu, L.; Sun, H.; Zhang, L. Photoinitiated polymerization-induced self-assembly via visible light-induced RAFT-mediated emulsion polymerization. ACS Macro Lett. 2019, 8, 205–212.CrossRefGoogle Scholar
  58. 58.
    Peng, C.; Joy, A. Baylis-Hillman reaction as a versatile platform for the synthesis of diverse functionalized polymers by chain and step polymerization. Macromolecules 2014, 47, 1258–1268.CrossRefGoogle Scholar
  59. 59.
    Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Recent advances in the Baylis-Hillman reaction and applications. Chem. Rev. 2003, 103, 811–892.CrossRefGoogle Scholar
  60. 60.
    Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Lett. 1999, 40, 2435–2438.CrossRefGoogle Scholar
  61. 61.
    Wang, X.; Figg, C. A.; Lv, X.; Yang, Y.; Sumerlin, B. S.; An, Z. Star architecture promoting morphological transitions during polymerization-induced self-assembly. ACS Macro Lett. 2017, 6, 337–342.CrossRefGoogle Scholar
  62. 62.
    Warren, N. J.; Mykhaylyk, O. O.; Mahmood, D.; Ryan, A. J.; Armes, S. P. RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies. J. Am. Chem. Soc. 2014, 136, 1023–1033.CrossRefGoogle Scholar
  63. 63.
    Dormidontova, E. E. Role of competitive PEO-water and waterwater hydrogen bonding in aqueous solution PEO behavior. Macromolecules 2002, 35, 987–1001.CrossRefGoogle Scholar
  64. 64.
    Yeow, J.; Boyer, C. Photoinitiated polymerization-induced selfassembly (photo-PISA): New insights and opportunities. Adv. Sci. 2017, 4, 1700137.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  2. 2.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunChina

Personalised recommendations