Advertisement

Synthesis of an Azobenzene-containing Main-chain Crystalline Polymer and Photodeformation Behaviors of Its Supramolecular Hydrogen-bonded Fibers

  • Zheng-Zheng Wang
  • Hui-Qi ZhangEmail author
Article
  • 31 Downloads

Abstract

The synthesis of a new azobenzene (azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are described. This main-chain azo polymer (namely Azo-MP6) was prepared via first the synthesis of a diacrylate-type azo monomer and its subsequent Michael addition copolymerization with trans-1,4-cyclohexanediamine under a mild reaction condition. Azo-MP6 was found to have a linear main-chain chemical structure instead of a branched one, as verified by comparing its 1H-NMR spectrum with that of the azo polymer prepared via the polymer analogous reaction of Azo-MP6 with acetic anhydride. The thermal stability, phase transition behavior, and photoresponsivity of Azo-MP6 were characterized with TGA, DSC, POM, XRD, and UV-Vis spectroscopy. The experimental results revealed that it had good thermal stability, low glass transition temperature, broad crystalline phase temperature range, and highly reversible photoresponsivity. Physically crosslinked supramolecular hydrogen-bonded fibers with good mechanical properties and a high alignment order of azo mesogens were readily fabricated from Azo-MP6 by using the simple melt spinning method, and they could show “reversible” photoinduced bending under the same UV light irradiation and good anti-fatigue properties.

Keywords

Main-chain azobenzene polymer Crystalline polymer Michael addition polymerization Physically crosslinked network Photodeformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21574070 and 21774063) and Natural Science Foundation of Tianjin (No. 16JCZDJC36800).

Supplementary material

10118_2019_2302_MOESM1_ESM.pdf (971 kb)
Synthesis of an Azobenzene-containing Main-chain Crystalline Polymer and Photodeformation Behaviors of Its Supramolecular Hydrogen-bonded Fibers

References

  1. 1.
    Yu, Y.; Ikeda, T. Soft actuators based on liquid-crystalline elastomers. Angew. Chem. Int. Ed. 2006, 45, 5416–5418.CrossRefGoogle Scholar
  2. 2.
    Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 2010, 22, 3366–3387.CrossRefGoogle Scholar
  3. 3.
    Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149–2180.CrossRefPubMedGoogle Scholar
  4. 4.
    Ikeda, T.; Ube, T. Photomobile polymer materials: From nano to macro. Mater. Today 2011, 14, 480–487.CrossRefGoogle Scholar
  5. 5.
    Ube, T.; Ikeda, T. Photomobile polymer materials with crosslinked liquid-crystalline structures: Molecular design, fabrication, and functions. Angew. Chem. Int. Ed. 2014, 53, 10290–10299.CrossRefGoogle Scholar
  6. 6.
    White, T. J.; Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098.CrossRefPubMedGoogle Scholar
  7. 7.
    Oscurato, S. L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzenecontaining materials. Nanophotonics 2018, 7, 1387–1422.CrossRefGoogle Scholar
  8. 8.
    Fang, L.; Zhang, H. T.; Li, Z.; Zhang, Y.; Zhang, Y. Y.; Zhang, H. Synthesis of reactive azobenzene main-chain liquid crystalline polymers via Michael addition polymerization and photomechanical effects of their supramolecular hydrogenbonded fibers. Macromolecules 2013, 46, 7650–7660.CrossRefGoogle Scholar
  9. 9.
    Nie, J.; Liu, X.; Yan, Y.; Zhang, H. Supramolecular hydrogenbonded photodriven actuators based on an azobenzene-containing main-chain liquid crystalline poly(ester-amide). J. Mater. Chem. C 2017, 5, 10391–10398.CrossRefGoogle Scholar
  10. 10.
    He, L. H.; Wang, G. M.; Tang, Q.; Fu, X. K.; Gong, C. B. Synthesis and characterization of novel electrochromic and photoresponsive materials based on azobenzene-4,4’-dicarboxylic acid dialkyl ester. J. Mater. Chem. C 2014, 2, 8162–8169.CrossRefGoogle Scholar
  11. 11.
    Alconcel, S. N.; Kim, S. H.; Tao, L.; Maynard, H. D. Synthesis of biotinylated aldehyde polymers for biomolecule conjugation. Macromol. Rapid Commun. 2013, 34, 983–989.CrossRefPubMedGoogle Scholar
  12. 12.
    Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 2006, 314, 87–531.Google Scholar
  13. 13.
    Zhou, Q. F.; Wang, X. J. “Liquid crystalline polymers” (in Chinese). Science Press, Beijing, China, 1994.Google Scholar
  14. 14.
    Niemann, M.; Ritter, H. Comb-like methacrylamide polymers containing condensates of amino acids and azobenzene moieties in the side chains. Makromol. Chem. 1993, 194, 1169–1181.CrossRefGoogle Scholar
  15. 15.
    Wang, G.; Tong, X.; Zhao, Y. Preparation of azobenzenecontaining amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 2004, 37, 8911–8917.CrossRefGoogle Scholar
  16. 16.
    Akiyama, H.; Tamaoki, N. Synthesis and photoinduced phase transitions of poly(N-isopropylacrylamide) derivative functionalized with terminal azobenzene units. Macromolecules 2007, 40, 5129–5132.CrossRefGoogle Scholar
  17. 17.
    Naciri, J.; Srinivasan, A.; Jeon, H.; Nikolov, N.; Keller, P.; Ratna, B. R. Nematic elastomer fiber actuator. Macromolecules 2003, 36, 8499–8505.CrossRefGoogle Scholar
  18. 18.
    Yoshino, T.; Kondo, M.; Mamiya, J.; Kinoshita, M.; Yu, Y.; Ikeda, T. Three-dimensional photomobility of crosslinked azobenzene liquid crystalline polymer fibers. Adv. Mater. 2010, 22, 1361–1363.CrossRefPubMedGoogle Scholar
  19. 19.
    Lv, J.; Wang, W.; Wu, W.; Yu, Y. A reactive azobenzene liquidcrystalline block copolymer as a promising material for practical application of light-driven soft actuators. J. Mater. Chem. C 2015, 3, 6621–6626.CrossRefGoogle Scholar
  20. 20.
    Ozawa, T.; Kondo, M.; Mamiya, J. I.; Ikeda, T. Enhancement of mechanical stability in hydrogen-bonded photomobile materials with chemically modified single-walled carbon nanotubes. J. Mater. Chem. C 2014, 2, 2313–2315.CrossRefGoogle Scholar
  21. 21.
    Sun, X.; Wang, W.; Qiu, L.; Guo, W.; Yu, Y.; Peng, H. Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew. Chem. Int. Ed. 2012, 51, 8520–8524.CrossRefGoogle Scholar
  22. 22.
    Li, X.; Ma, S.; Hu, J.; Ni, Y.; Lin, Z.; Yu, H. Photo-activated bimorph composites of Kapton and liquid-crystalline polymer towards biomimetic circadian rhythms of Albizia julibrissin leaves. J. Mater. Chem. C 2019, 7, 622–629.CrossRefGoogle Scholar
  23. 23.
    Wang, W.; Sun, X.; Wu, W.; Peng, H.; Yu, Y. Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew. Chem. Int. Ed. 2012, 51, 4644–4647.CrossRefGoogle Scholar
  24. 24.
    Cheng, Z.; Ma, S.; Zhang, Y.; Huang, S.; Chen, Y.; Yu, H. Photomechanical motion of liquid-crystalline fibers bending away from a light source. Macromolecules 2017, 50, 8317–8324.CrossRefGoogle Scholar
  25. 25.
    Lee, K. M.; Wang, D. H.; Koerner, H.; Vaia, R. A.; Tan, L. S.; White, T. J. Enhancement of photogenerated mechanical force in azobenzene-functionalized polyimides. Angew. Chem. Int. Ed. 2012, 51, 4117–4121.CrossRefGoogle Scholar
  26. 26.
    Hao, Y.; Huang, S.; Guo, Y.; Zhou, L.; Hao, H.; Barrett, C. J.; Yu, H. Photoinduced multi-directional deformation of azobenzene molecular crystals. J. Mater. Chem. C 2019, 7, 503–508.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of ChemistryNankai UniversityTianjinChina

Personalised recommendations