Nanoparticle Dispersion and Glass Transition Behavior of Polyimide-grafted Silica Nanocomposites

  • Sha-Ni Hu
  • Yu LinEmail author
  • Guo-Zhang WuEmail author


How to control the spatial distribution of nanoparticles to meet different performance requirements is a constant challenge in the field of polymer nanocomposites. Current studies have been focused on the flexible polymer chain systems. In this study, the rigid polyimide (PI) chain grafted silica particles with different grafting chain lengths and grafting densities were prepared by “grafting to” method, and the influence of polymerization degree of grafted chains (N), matrix chains (P), and grafting density (σ) on the spatial distribution of nanoparticles in the PI matrix was explored. The glass transition temperature (Tg) of PI composites was systematically investigated as well. The results show that silica particles are well dispersed in polyamic acid composite systems, while aggregation and small clusters appear in PI nanocomposites after thermal imidization. Besides, the particle size has no impact on the spatial distribution of nanoparticles. When σ·N0.5 ≪ (N/P)2, the grafted and matrix chains interpenetrate, and the frictional resistance of the segment increases, resulting in restricted relaxation kinetics and Tg increase of the PI composite system. In addition, smaller particle size and longer grafted chains are beneficial to improving Tg of composites. These results are all propitious to complete the microstructure control theory of nanocomposites and make a theoretical foundation for the high performance and multi-function of PI nanocomposites.


Polyimide grafted nanoparticle Dispersion morphology Glass transition temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51503066 and 51873063), the National Basic Research Program of China (No. 2013CB035505), Shanghai Sailing Program (No. 14YF1404900), and MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University (No. 2017MSF02).

Supplementary material

10118_2019_2300_MOESM1_ESM.pdf (387 kb)
Nanoparticle Dispersion and Glass Transition Behavior of Polyimide-grafted Silica Nanocomposites


  1. 1.
    Oh, H.; Green, P. F. Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nat. Mater. 2009, 8, 139–143.CrossRefPubMedGoogle Scholar
  2. 2.
    Akcora, P.; Liu, H.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B. C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Pryamitsyn, V. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 2009, 8, 354–359.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu, L. P.; Lin, Y.; Guan, A. G.; Wu, G. Z. Tuning spatial distribution of polystyrene-grafted silica nanoparticles in different polymer matrices. Acta Polymerica Sinica (in Chinese) 2016, 1546–1554.Google Scholar
  4. 4.
    Tan, Y. Q.; Wang, L. B.; Xiao, J. L.; Zhang, X.; Wang, Y.; Liu, C.; Zhang, H. W.; Liu, C. Z.; Xia, Y. Z.; Sui, K. Y. Synchronous enhancement and stabilization of graphene oxide liquid crystals: Inductive effect of sodium alginates in different concentration zones. Polymer 2019, 160, 107–114.CrossRefGoogle Scholar
  5. 5.
    Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Van, H. B.; Guan, Z.; Chen, G.; Krishnan, R. S. General strategies for nanoparticle dispersion. Science 2006, 311, 1740–1743.CrossRefPubMedGoogle Scholar
  6. 6.
    Lin, Y.; Liu, L. P.; Zhang, D. G.; Liu, Y. H.; Guan, A. G.; Wu, G. Z. Unexpected segmental dynamics in polystyrene-grafted silica nanocomposites. Soft Matter 2016, 12, 8542–8553.CrossRefPubMedGoogle Scholar
  7. 7.
    Green, P. F. The structure of chain end-grafted nanoparticle/homopolymer nanocomposites. Soft Matter 2011, 7, 7914–7926.CrossRefGoogle Scholar
  8. 8.
    Kumar, S. K.; Jouault, N.; Benicewicz, B.; Neely, T. Nanocomposites with polymer grafted nanoparticles. Macromolecules 2013, 46, 3199–3214.CrossRefGoogle Scholar
  9. 9.
    Sunday, D. F.; Green, D. L. Thermal and rheological behavior of polymer grafted nanoparticles. Macromolecules 2015, 48, 8651–8659.CrossRefGoogle Scholar
  10. 10.
    Xue, Y. H.; Zhu, Y. L.; Quan, W.; Qu, F. H.; Han, C.; Fan, J. T.; Liu, H. Polymer-grafted nanoparticles prepared by surface-initiated polymerization: The characterization of polymer chain conformation, grafting density and polydispersity correlated to the grafting surface curvature. Phys. Chem. Chem. Phys. 2013, 15, 15356–15364.CrossRefPubMedGoogle Scholar
  11. 11.
    Hasegawa, R.; Aoki, Y.; Doi, M. Optimum graft density for dispersing particles in polymer melts. Macromolecules 1996, 29, 6656–6662.CrossRefGoogle Scholar
  12. 12.
    Ndoro, T. V. M.; Voyiatzis, E.; Ghanbari, A.; Theodorou, D. N.; Böhm, M. C.; Müller-Plathe, F. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: Atomistic molecular dynamics simulations. Macromolecules 2011, 44, 2316–2327.CrossRefGoogle Scholar
  13. 13.
    Mansoori, Y.; Roojaei, K.; Zamanloo, M. R.; Imanzadeh, G. Polymerclay nanocomposites: Chemical grafting of polystyrene onto Cloisite 20A. Chinese J. Polym. Sci. 2012, 30, 815–823.CrossRefGoogle Scholar
  14. 14.
    Chevigny, C.; Dalmas, F.; Cola, E. D.; Gigmes, D.; Bertin, D.; Boué, F.; Jestin, J. Polymer-grafted-nanoparticles nanocomposites: Dispersion, grafted chain conformation, and rheological behavior. Macromolecules 2011, 44, 122–133.CrossRefGoogle Scholar
  15. 15.
    Pandey, Y. N.; Papakonstantopoulos, G. J.; Doxastakis, M. Polymer/nanoparticle interactions: Bridging the gap. Macromolecules 2013, 46, 5097–5106.CrossRefGoogle Scholar
  16. 16.
    Volgin, I. V.; Larin, S. V.; Lyulin, S. V. Diffusion of nanoparticles in polymer systems. Polym. Sci. Ser. C 2018, 60, 122–134.CrossRefGoogle Scholar
  17. 17.
    O’Reilly, M. V.; Winey, K. I. Silica nanoparticles densely grafted with PEO for ionomer plasticization. RSC Adv. 2015, 5, 19570–19580.CrossRefGoogle Scholar
  18. 18.
    Shi, D. W.; Lai, X. L.; Jiang, Y. P.; Yan, C.; Liu, Z. Y.; Yang, W.; Yang, M. B. Synthesis of inorganic silica grafted three-arm PLLA and their behaviors for PLA matrix. Chinese J. Polym. Sci. 2019, 37, 216–226.CrossRefGoogle Scholar
  19. 19.
    Purohit, P. J.; Huacuja-Sanchez, J. E.; Wang, D. Y.; Emmerling, F.; Thunemann, A.; Heinrich, G.; Schonhals, A. Structure-property relationships of nanocomposites based on polypropylene and layered double hydroxides. Macromolecules 2011, 44, 4342–4354.CrossRefGoogle Scholar
  20. 20.
    Chen, L.; Zheng, K.; Tian, X. Y.; Hu, K.; Wang, R. X.; Liu, C.; Li, Y.; Cui, P. Double glass transitions and interfacial immobilized layer in in-situ-synthesized poly(vinyl alcohol)/silica nanocomposites. Macromolecules 2010, 43, 1076–1082.CrossRefGoogle Scholar
  21. 21.
    Bogoslovov, R. B.; Roland, C. M.; Ellis, A. R.; Randall, A. M.; Robertson, C. G. Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules 2008, 41, 1289–1296.CrossRefGoogle Scholar
  22. 22.
    Schonhals, A.; Goering, H.; Costa, F. R.; Wagenknecht, U.; Heinrich, G. Dielectric properties of nanocomposites based on polyethylene and layered double hydroxide. Macromolecules 2009, 42, 4165–4174.CrossRefGoogle Scholar
  23. 23.
    Lin, Y.; Liu, L. P.; Cheng, J. Q.; Shangguan, Y. G.; Yu, W. W.; Qiu, B. W.; Zheng, Q. Segmental dynamics and physical aging of polystyrene/silver nanocomposites. RSC Adv. 2014, 4, 20086–20093.CrossRefGoogle Scholar
  24. 24.
    Rittigstein, P.; Torkelson, J. M. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 2935–2943.CrossRefGoogle Scholar
  25. 25.
    Chakraborty, S.; Kumar, M.; Suresh, K.; Pugazhenthi, G. Investigation of structural, rheological and thermal properties of PMMA/Oni-AL LDH nanocomposites synthesized via solvent blending method: Effect of LDH loading. Chinese J. Polym. Sci. 2016, 34, 739–754.CrossRefGoogle Scholar
  26. 26.
    Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 2007, 6, 278.CrossRefPubMedGoogle Scholar
  27. 27.
    Lin, Y.; Liu, L. P.; Xu, G. M.; Zhang, D. G.; Guan, A. G.; Wu, G. Z. Interfacial interactions and segmental dynamics of poly(vinyl acetate)/silica nanocomposites. J. Phys. Chem. C 2015, 119, 12956–12966.CrossRefGoogle Scholar
  28. 28.
    Song, Y. H.; Bu, J.; Zuo, M.; Gao, Y.; Zhang, W. J.; Zheng, Q. Glass transition of poly(methyl methacrylate) filled with nanosilica and core-shell structured silica. Polymer 2017, 127, 141–149.CrossRefGoogle Scholar
  29. 29.
    Kim, S. A.; Mangal, R.; Archer, L. A. Relaxation dynamics of nanoparticle-tethered polymer chains. Macromolecules 2015, 48, 6280–6293.CrossRefGoogle Scholar
  30. 30.
    Park, C.; Ounaies, Z.; Watson, K. A.; Crooks, R. E.; Smith, J.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; Clair, T. L. S. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 2002, 364, 303–308.CrossRefGoogle Scholar
  31. 31.
    Zhu, B. K.; Xie, S. H.; Xu, Z. K.; Xu, Y. Y. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos. Sci. Technol. 2006, 66, 548–554.CrossRefGoogle Scholar
  32. 32.
    Yen, C. T.; Chen, W. C.; Liaw, D. J.; Lu, H. Y. Synthesis and properties of new polyimide-silica hybrid films through both intrachain and interchain bonding. Polymer 2003, 44, 7079–7087.CrossRefGoogle Scholar
  33. 33.
    Gong, G. M.; Gao, K.; Wu, J. T.; Sun, N.; Zhou, C.; Zhao, Y.; Jiang, L. A highly durable silica/polyimide superhydrophobic nanocomposite film with excellent thermal stability and abrasion resistant performances. J. Mater. Chem. A 2014, 3, 713–718.CrossRefGoogle Scholar
  34. 34.
    Chang, C. C.; Chen, W. C. Synthesis and optical properties of polyimide-silica hybrid thin films. Chem. Mater. 2002, 14, 4242–4248.CrossRefGoogle Scholar
  35. 35.
    Shen, J. J.; Zhang, D. G.; Liu, X.; Tang, Y. C.; Lin, Y.; Wu, G. Z. Facile fabrication of high-performance polyimide nanocomposites with in situ formed "impurity-free" dispersants. Chinese J. Polym. Sci. 2016, 34, 532–541.CrossRefGoogle Scholar
  36. 36.
    Jian, S. J.; Hu, X. W.; Zou, Y.; Chen, S. L.; Hou, H. Q. The preparation and characterization for high-strength electrospun polyimide/Ag composite nanofibers. J. Jiangxi. Normal. Univ: Nat. Sci. Ed. 2012, 36, 1–4.Google Scholar
  37. 37.
    Yu, Q. Q.; Qi, S. L.; Wu, D. Z.; Wang, X. D.; Jin, R. G.; Wu, Z. P. Febrication of surface-nickelized polyimide composite films by surface modification and in situ reduction method. Polym. Mater. Sci. Eng. 2012, 28, 152–154.Google Scholar
  38. 38.
    Hsu, C. T.; Wu, C.; Chuang, C. N.; Chen, S. H.; Chiu, W. Y.; Hsieh, K. H. Synthesis and characterization of nano silver-modified graphene/PEDOT:PSS for highly conductive and transparent nanocomposite films. J. Polym. Res. 2015, 22, 200.CrossRefGoogle Scholar
  39. 39.
    Wu, G. Z.; Li, B. P.; Jiang, J. D. Carbon black self-networking induced co-continuity of immiscible polymer blends. Polymer 2010, 51, 2077–2083.CrossRefGoogle Scholar
  40. 40.
    Torquato, S.; Hyun, S.; Donev, A. Multifunctional composites: Optimizing microstructures for simultaneous transport of heat and electricity. Phys. Rev. Lett. 2002, 89, 266601.CrossRefPubMedGoogle Scholar
  41. 41.
    Ragosta, G.; Abbate, M.; Musto, P.; Scarinzi, G. Effect of the chemical structure of aromatic polyimides on their thermal aging, relaxation behavior and mechanical properties. J. Mater. Sci. 2012, 47, 2637–2647.CrossRefGoogle Scholar
  42. 42.
    Meador, M. A. B.; McMillon, E.; Sandberg, A.; Barrios, E.; Wilmoth, N. G.; Mueller, C. H.; Miranda, F. A. Dielectric and other properties of polyimide aerogels containing fluorinated blocks. ACS Appl. Mater. Intefaces 2014, 6, 6062–6068.CrossRefGoogle Scholar
  43. 43.
    Marques, M. E.; Mansur, A. A. P.; Mansur, H. S. Chemical functionalization of surfaces for building three-dimensional engineered biosensors. Appl. Surf. Sci. 2013, 275, 347–360.CrossRefGoogle Scholar
  44. 44.
    Park, S. J.; Cho, K. S.; Kim, S. H. A study on dielectric characteristics of fluorinated polyimide thin film. J. Colloid. Interf. Sci. 2004, 272, 384–390.CrossRefGoogle Scholar
  45. 45.
    Wolany, D.; Fladung, T.; Duda, L.; Lee, J. W.; Gantenfort, T.; Wiedmann, L.; Benninghoven, A. Combined ToF-SIMS/XPS study of plasma modification and metallization of polyimide. Surf. Interface Anal. 1999, 27, 609–617.CrossRefGoogle Scholar
  46. 46.
    Iyer, K. S.; Luzinov, I. Effect of macromolecular anchoring layer thickness and molecular weight on polymer grafting. Macromolecules 2005, 37, 9538–9545.CrossRefGoogle Scholar
  47. 47.
    Liu, H.; Zhao, H.Y.; Florian, M. P.; Qian, H. J.; Sun, Z. Y.; Lu, Z. Y. Distribution of the number of polymer chains grafted on nanoparticles fabricated by grafting-to and grafting-from procedures. Macromolecules 2018, 51, 3758–3766.CrossRefGoogle Scholar
  48. 48.
    Xing, J. Y.; Lu, Z. Y.; Liu, H.; Xue, Y. H. The selectivity of nanoparticles for polydispersed ligand chains during the grafting-to process: A computer simulation study. Phys. Chem. Chem. Phys. 2018, 20, 2066–2074.CrossRefPubMedGoogle Scholar
  49. 49.
    Wang, W.; Wu, J. S. Interfacial influence on mechanical properties of polypropylene/polypropylene-grafted silica nanocomposites. J. Appl. Polym. Sci. 2018, 135, 45887.CrossRefGoogle Scholar
  50. 50.
    Iyer, K. S.; Zdyrko, B.; Malz, H.; Pionteck, J.; Luzinov, I. Polystyrene layers grafted to macromolecular anchoring layer. Macromolecules 2003, 36, 6519–6526.CrossRefGoogle Scholar
  51. 51.
    Llorente, A.; Serrano, B.; Baselga, J. The effect of polymer grafting in the dispersibility of alumina/polysulfone nanocomposites. Macromol. Res. 2016, 25, 1–10.Google Scholar
  52. 52.
    Lin, Y.; Hu, S. N.; Wu, G. Z. Structure, dynamics and mechanical properties of polyimide-grafted silica nanocomposites. J. Phys. Chem. C 2019, 123, 6616–6626.CrossRefGoogle Scholar
  53. 53.
    Grala, M.; Bartczak, Z.; Różański, A. Morphology, thermal and mechanical properties of polypropylene/SiO2 nanocomposites obtained by reactive blending. J. Polym. Res. 2016, 23, 25.CrossRefGoogle Scholar
  54. 54.
    Natarajan, B.; Neely, T.; Rungta, A.; Benicewicz, B. C.; Schadler, L. S. Thermomechanical properties of bimodal brush modified nanoparticle composites. Macromolecules 2013, 46, 4909–4918.CrossRefGoogle Scholar
  55. 55.
    Ferreira, P. G.; Ajdari, A.; Leibler, L. Scaling law for entropic effects at interfaces between grafted layers and polymer melts. Macromolecules 1998, 31, 3994–4003.CrossRefGoogle Scholar
  56. 56.
    Chao, H.; Riggleman, R. A. Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites. Polymer 2013, 54, 5222–5229.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations