Chinese Journal of Polymer Science

, Volume 37, Issue 10, pp 943–950 | Cite as

(Arylimido)vanadium(V)-Alkylidene Complexes as Catalysts for Ring-opening Metathesis Polymerization (ROMP) of Cyclic Olefins: Ligand Design for Exhibiting the High Activity

  • Kotohiro NomuraEmail author
  • Sapanna Chaimongkolkunasin
Feature Article


(Imido)vanadium(V)-alkylidene complexes of type V(CHSiMe3)(NR)(OR′)(PMe3)2 [R = Ad, C6H5, 2,6-Me2C6H3, 2,6-Cl2C6H3; R′ = 2,6-Me2C6H3, 2,6-iPr2C6H3, 2,6-F2CeH3, C6F5, C6Cl5] exhibited from moderate to remarkable catalytic activities for ring-opening metathesis polymerization (ROMP) of norbornene (NBE). The catalytic activities were affected by the ligand substituents, and V(CHSiMe3)(N-2,6-Cl2C6H3)(OC6X5)(PMe3)2 (X = F, Cl) demonstrated the exceptionally high catalytic activities for ROMP of NBE. The complexes polymerized cycloheptene (CHPE) and cis-cyclooctene (COE), and ROMP of COE by the OC6Cl5 analogue proceeded in a living manner even at 80 °C, and the activity increased with increasing the temperature up to 120 °C. Highly active catalysts for ROMP of cyclic olefins (NBE, cyclopentene, and CHPE) can be generated in situ by premixing isolated V(CHSiMe3)(NC6F5)(O-2,6-iPr2C6H3)(PMe3)2 with 1.0 equiv. of C6F5OH or C6Cl5OH via immediate phenoxy exchange; the activity was affected by the kind of phenol added [TOF in the ROMPs of NBE: 4.62 × 104 min−1 (upon addition of C6F5OH) versus 37.3 min−1 (none)].


Olefin metathesis Molecular catalyst Ring-opening metathesis polymerization Cyclic olefin Vanadium catalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



K. N. expresses his heartfelt thanks to former/present group members who contributed this project as coauthors, and the other members for discussion/supports. This project was partly supported by Grant-in-Aid for Scientific Research on Innovative Areas (“3D Active-Site Science”, No. 26105003) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS, Nos. 15H03812, 18H01982). S. C. acknowledges the Tokyo Metropolitan government (Tokyo Human Resources Fund for City Diplomacy) for pre-doctoral fellowship.


  1. 1.
    Handbook of Metathesis, ed. by Grubbs, R. H.; Wenzel, A. G.; O’Leary, D. J. and Khosravi, E. Wiley-VCH, Weinheim, 2015.Google Scholar
  2. 2.
    Olefin Metathesis: Theory and Practice, ed. by Grela, K. John Wiley & Sons, Inc., Hoboken, New Jersey, 2014.Google Scholar
  3. 3.
    Handbook of Metathesis, 2nd Ed, ed. by Grubbs, R. H. and Wenzel, A. G. Wiley-VCH, Weinheim, 2015, Vol. 1.Google Scholar
  4. 4.
    Pietraszuk, C. in Olefin Metathesis: Theory and Practice, ed. by Grela, K., John Wiley & Sons, Inc. Hoboken, New Jersey, 2014, pp. 371–396.Google Scholar
  5. 5.
    Schrock, R. R. Recent advances in high oxidation state Mo and W imido alkylidene chemistry. Chem. Rev. 0009, 109, 3211–3226.CrossRefGoogle Scholar
  6. 6.
    Schrock, R. R. Synthesis of stereoregular polymers through ring-opening metathesis polymerization. Acc. Chem. Res. 2014, 47, 2457–2466.CrossRefGoogle Scholar
  7. 7.
    Vougioukalakis, G.; Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010, 110, 1746–1787.CrossRefGoogle Scholar
  8. 8.
    Keitz, B. K., in Handbook of Metathes, 2nd Ed, ed. by Grubbs, R. H. and Wenzel, A. G. Wiley-VCH, Weinheim, 2015, vol. 1, pp. 71–85.Google Scholar
  9. 9.
    Nomura, K.; Hou, X. Synthesis of vanadium-alkylidene complexes and their use as catalysts for ring opening metathesis polymerization. Dalton Trans. 2017, 46, 12–24.CrossRefGoogle Scholar
  10. 10.
    Zhang, S.; Zhang, W.; Nomura, K. Synthesis and reaction chemistry of alkylidene complexes with titanium, zirconium, vanadium, and niobium: Effective catalysts for olefin metathesis polymerization and the other organic transformations. Adv. Organomet. Chem. 2017, 68, 93–136.CrossRefGoogle Scholar
  11. 11.
    Nomura, K.; Abdellatif, M. M. Precise synthesis of polymers containing functional end groups by living ring-opening metathesis polymerization (ROMP): Efficient tools for synthesis of block/graft copolymers. Polymer 2010, 51, 1861–1881.CrossRefGoogle Scholar
  12. 12.
    Leitgeb, A.; Wappel, J.; Slugovc, C. The ROMP toolbox upgraded. Polymer 2010, 51, 2927–2946.CrossRefGoogle Scholar
  13. 13.
    Buchmeiser, M. R. Ring-opening metathesis polymerization-derived materials for separation science, heterogeneous catalysis and tissue engineering. Macromol. Symp. 2010, 298, 17–24.CrossRefGoogle Scholar
  14. 14.
    Mutlu, H.; de Espinosa, L. M.; Meier, M. A. R. Acyclic diene metathesis: A versatile tool for the construction of defined polymer architectures. Chem. Soc. Rev. 2011, 40, 1404–1445.CrossRefGoogle Scholar
  15. 15.
    Schulz, M. D.; Wagener, K. B. Precision polymers through ADMET polymerization. Macromol. Chem. Phys. 2014, 215, 1936–1945.CrossRefGoogle Scholar
  16. 16.
    Handbook of Metathesis, 2nd Ed., ed. by Grubbs, R. H. and Khosravi, E. Wiley-VCH, Weinheim, 2015, Vol. 3.Google Scholar
  17. 17.
    Lunn, D. J.; Discekici, E. H.; de Alaniz, J. R.; Gutekunst, W. R.; Hawker, C. J. Established and emerging strategies for polymer chain-end modification. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2903–2914.CrossRefGoogle Scholar
  18. 18.
    Chen, Y.; Abdellatif, M. M.; Nomura, K. Olefin metathesis polymerization: Some recent developments in the precise polymerizations for synthesis of advanced materials (by ROMP, ADMET). Tetrahedron 2018, 74, 619–643.CrossRefGoogle Scholar
  19. 19.
    Gestwicki J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling L. L. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 2002, 124, 14922–14933.CrossRefGoogle Scholar
  20. 20.
    Nomura, K.; Zhang, S. Design of vanadium complex catalysts for precise olefin polymerization. Chem. Rev. 2011, 111, 2342–2362.CrossRefGoogle Scholar
  21. 21.
    Redshaw, C. Vanadium procatalysts bearing chelating aryloxides: Structure-activity trends in ethylene polymerization. Dalton Trans. 2010, 39, 5595–5604.CrossRefGoogle Scholar
  22. 22.
    Nomura, K.; Hou, X. in Handbook of transition metal polymerization catalysts, 2nd Ed., ed. by Hoff, R. Wiley-VCH, Weinheim, 2018, p. 313.Google Scholar
  23. 23.
    Nomura, K.; Onishi, Y.; Fujiki, M.; Yamada, J. Syntheses of various (arylimido)vanadium(V)-dialkyl complexes containing aryloxo and alkoxo ligands, and ring-opening metathesis polymerization using a vanadium(V)-alkylidene complex. Organometallics 2008, 27, 3818–3824.CrossRefGoogle Scholar
  24. 24.
    Nomura, K.; Suzuki, K.; Katao, S.; Matsumoto, Y. Ring-opening polymerization of THF by aryloxo-modified (imido)vanadium(V)-alkyl complexes and ring-opening metathesis polymerization by highly active V(CHSiMe3)(NAd)(OC6F5)(PMe3)2. Organometallics 2012, 31, 5114–5120.CrossRefGoogle Scholar
  25. 25.
    Hou, X.; Nomura, K. (Arylimido)vanadium(V)-alkylidene complexes containing fluorinated aryloxo and alkoxo ligands for fast living ring-opening metathesis polymerization (ROMP) and highly cis-specific ROMP. J. Am. Chem. Soc. 2015, 137, 4662–4665.CrossRefGoogle Scholar
  26. 26.
    Hou, X.; Nomura, K. Ring-opening metathesis polymerization of cyclic olefins by (arylimido)vanadium(V)-alkylidenes: Highly active, thermally robust cis specific polymerization. J. Am. Chem. Soc. 2016, 138, 11840–11849.CrossRefGoogle Scholar
  27. 27.
    Chaimongkolkunasin, S.; Nomura, K. (Arylimido)vanadium(V)-alkylidenes containing chlorinated phenoxy ligands: Thermally robust, highly active catalyst in ring-opening metathesis polymerization of cyclic olefins. Organometallics 2018, 37, 2064–2074.CrossRefGoogle Scholar
  28. 28.
    Schleyer, P. V. R.; Williams, J. E.; Blanchard, K. R. Evaluation of strain in hydrocarbons. The strain in adamantane and its origin. J. Am. Chem. Soc. 1970, 92, 2377–2386.CrossRefGoogle Scholar
  29. 29.
    Hejl, A.; Scherman, O. A.; Grubbs, R. H. Ring-opening metathesis polymerization of functionalized low-strain monomers with ruthenium-based catalysts. Macromolecules 2005, 38, 7214–7218.CrossRefGoogle Scholar
  30. 30.
    Hlil, A. R.; Balogh, J.; Moncho, S.; Su, H. L.; Tuba, R.; Brothers, E. N.; Al-Hashimi, M.; Bazzi, H. S. Ring opening metathesis polymerization (ROMP) of five- to eight-membered cyclic olefins: Computational, thermodynamic, and experimental approach. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3137–3145.CrossRefGoogle Scholar
  31. 31.
    Katz, T. J.; Lee, S. J.; Acton, N. Stereospecific polymerizations of cycloalkenes induced by a metal-carbene. Tetrahedron Lett. 1976, 17, 4247–4250.CrossRefGoogle Scholar
  32. 32.
    Reported examples for ROMP of cyclooctene (COE) by W-alkylidene complex catalyst in the presence of AlCl3 (references 32–34). Blosch, L. L.; Abboud, K.; Boncella, J. M. Synthesis of an air-stable, moisture-stable, and thermally stable tungsten(VI) oxo alkylidene complex. Precursor to an air- and moisture-stable ROMP catalyst. J. Am. Chem. Soc. 1991, 113, 7066–7068.CrossRefGoogle Scholar
  33. 33.
    Blosch, L. L.; Gamble, A. S.; Abboud, K.; Boncella, J. M. Synthesis of stable tungsten(VI) imido alkylidene complexes: Crystal structure of an air-stable cationic alkylidene complex. Organometallics 1992, 11, 2342–2344.CrossRefGoogle Scholar
  34. 34.
    Gamble, A. S.; Boncella, J. M. Facile synthesis of cationic tungsten(VI) alkylidene complexes. Organometallics 1993, 12, 2814–2819.CrossRefGoogle Scholar
  35. 35.
    ROMP of COE by bimetallic Mo, W alkylidenes (references 35, 36). Barinova, Y. P.; Begantsova, Y. E.; Stolyarova, N. E.; Grigorieva, I. K.; Cherkasov, A. V.; Fukin, G. K.; Kurskii, Y. A.; Bochkarev, L. N.; Abakumov, G. A. Synthesis and structures of bimetallic silicon-containing imido alkylidene complexes of molybdenum Me2Si[CHMo(NAr)(ORF3)2]2 and PhV-inSi[CHMo(NAr)(ORF3)2]2. Inorg. Chim. Acta 2010, 363, 2313–2317.CrossRefGoogle Scholar
  36. 36.
    Bochkarev, A. L.; Basova, G. V.; Grigorieva, I. K.; Stolyarova, N. E.; Malysheva, I. P.; Fukin, G. K.; Baranov, E. V.; Kurskii, Y. A.; Bochkarev, L. N.; Abakumov, G. A. Synthesis and structures of bimetallic silicon-containing imido alkylidene complexes of tungsten (R′O)2(ArN)W=CH—SiR2—CH=W(NAr)(OR′)2(R = Me, Ph) and (R′O)2(ArN)W=CH—SiMe2SiMe2—CH=W(NAr)(OR′)2. J. Organomet. Chem. 2010, 695, 692–696.CrossRefGoogle Scholar
  37. 37.
    Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Muller, P.; Hoveyda, A. H. Z-selective olefin metathesis processes catalyzed by a molybdenum hexaisopropylterphenoxide monopyrrolide complex. J. Am. Chem. Soc. 2009, 131, 7962–7963.CrossRefGoogle Scholar
  38. 38.
    Chaimongkolkunasin, S.; Hou, X.; Nomura, K. Ring opening metathesis polymerization of norbornene and tetracyclododecene with cyclooctene by using (arylimido)vanadium(V)-alkylidene catalyst. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3067–3074.CrossRefGoogle Scholar
  39. 39.
    Nomura, K.; Matsumoto, Y. Unique reactivity of (arylimido)vanadium(V)-alkyl complexes with phenols: Fast phenoxy ligand exchange in the presence of vanadium(V)-alkyls. Organometallics 2011, 30, 3610–3618.CrossRefGoogle Scholar
  40. 40.
    Hatagami, K.; Nomura, K. Synthesis of (adamantylmido)vanadium(V)-alkyl, alkylidene complex trapped with PMe3: Reactions of the alkylidene complexes with phenols. Organometallics 2014, 33, 6585–6592.CrossRefGoogle Scholar
  41. 41.
    Hayashibara, H.; Hou, X.; Nomura, K. Facile in situ generation of highly active (arylimido)vanadium(V)-alkylidene catalysts for ring-opening metathesis polymerization (ROMP) of cyclic olefins by immediate phenoxy ligand exchange. Chem. Commun. 2018, 54, 13559–13562.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry Graduate School of ScienceTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations