Advertisement

Enhanced Mechanical Properties of Poly(arylene sulfide sulfone) Membrane by Co-electrospinning with Poly(m-xylene adipamide)

  • Lu Chen
  • Xin-Lin Tuo
  • Xi-Chuan Fan
  • Chun-Jie Xie
  • Bao-Hua Guo
  • Jian Yu
  • Ping Hu
  • Zhao-Xia GuoEmail author
Article
  • 5 Downloads

Abstract

The mechanical properties of poly(arylene sulfide sulfone) (PASS) electrospun membrane were significantly enhanced by co-electrospinning with semi-aromatic nylon poly(m-xylene adipamide) (MXD6), another engineering plastic with high thermal stability and good mechanical properties. The tensile strength of PASS membrane increased with increased incorporation of MXD6, and was tripled when 20% MXD6 was incorporated. The mechanism of the mechanical property improvement is the existence of hydrogen bonding interaction between PASS and MXD6 and between adjacent fibers at the intersections. Thermal properties of the PASS/MXD6 membranes were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), which showed that the membranes could be stably utilized up to 180 °C without any change in appearance and without decomposition. Contact angle measurements of all the membranes showed hydrophobic character. To demonstrate the potential applications of PASS/MXD6 blend membranes, their oil absorption capacities were evaluated with three oils of different viscosities, which proved that the PASS/MXD6 membranes are better absorbents than commercial non-woven polypropylene fibers. Therefore, PASS/MXD6 fibrous membranes produced by electrospinning have a great potential in practical applications.

Keywords

Electrospinning Mechanical properties PASS MXD6 Oil absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors sincerely thank Sichuan Zhongke Xingye High-tech Materials Co., Ltd. for kindly providing the PASS.

References

  1. 1.
    Liu, Z.; Zhang, S. Y.; Huang, G. S.; Zhang, K.; Wang, X. J.; Zhang, G.; Long, S. R.; Yang, J. Effects of polyarylene sulfide sulfone on the mechanical properties of glass fiber cloth-reinforced polyphenylene sulfide composites. High Perform. Polym. 2015, 27, 145–152.CrossRefGoogle Scholar
  2. 2.
    Wang, X.; Zhang, M.; Liu, J.; Zhang, G.; Yang, J. Thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone crystal solvate. Chinese J. Polym. Sci. 2010, 28, 85–91.CrossRefGoogle Scholar
  3. 3.
    Zhang, G.; Yuan, S.; Li, Z.; Long, S.; Yang, J. Poly(arylene ether sulfone) containing thioether units: Synthesis, oxidation and properties. RSC Adv. 2014, 4, 23191–23201.CrossRefGoogle Scholar
  4. 4.
    Kong, Y.; Huang, G. S.; Zhang, G.; Wang, X. J.; Long, S. R.; Yang, J. The influence of processing aids on the properties of poly(arylene sulfide sulfone). High Perform. Polym. 2014, 26, 914–921.CrossRefGoogle Scholar
  5. 5.
    Liu, Y.; Bhatnagara, A.; Ji, Q.; Riffle, J. S.; McGrath, J. E.; Geibel, J. F.; Kashiwagi, T. Influence of polymerization conditions on the molecular structure stability and physical behavior of poly(phenylene sulfide sulfone) homopolymers. Polymer 2000, 41, 5137–5146.CrossRefGoogle Scholar
  6. 6.
    Huang, H. M. Electrospinning of poly(arylene sulfide) nanofibers. Master’s thesis, Sichuan University (Chengdu), 2007.Google Scholar
  7. 7.
    Liu, L.; Wang, X. J.; Wang, Y. Y.; Li, L.; Pan, K.; Yang, J.; Cao, B. Preparation and characterization of asymmetric poly(arylene sulfide sulfone) (PASS) solvent-resistant nanofiltration membranes. Mater. Lett. 2014, 132, 11–14.CrossRefGoogle Scholar
  8. 8.
    Yuan, S.S.; Wang, J.; Li, X.; Zhu, J.Y.; Volodine, A.; Wang, X.; Yang, J.; van Puyvelde, P.; van der Bruggen, B. New promising polymer for organic solvent nanofiltration: Oxidized poly(arylene sulfide sulfone). J. Membr. Sci. 2018, 549, 438–445.CrossRefGoogle Scholar
  9. 9.
    Chu, Z.; L.; Feng, Y. J.; Seeger, S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 2015, 54, 2328–2338.CrossRefGoogle Scholar
  10. 10.
    Gu, G. Q; Han, C. B.; Lu, C. X.; He, C.; Jiang, T.; Gao, Z. L.; Li, C. J.; Wang, Z. L. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 2017, 11, 6211–6217.CrossRefGoogle Scholar
  11. 11.
    Feng, X.; Wang, B.; Wang, Q. N.; Li, C. J. Preparation and properties of polyacrylonitrile nanofiber membranes used for air filtering by electrospinning. J. Text. Res. 2017, 38, 6–11.Google Scholar
  12. 12.
    Shi, Y. Z.; Yang, D. Z.; Yu, R. M.; Liu, Y. X.; Qu, J.; Liu, B.; Yu, Z. Z. Efficient photocatalytic reduction approach for synthesizing chemically bonded N-doped TiO2/reduced graphene oxide hybrid as a freestanding electrode for high-performance lithium storage. ACS Appl. Energy Mater. 2018, 1, 4186–4195.CrossRefGoogle Scholar
  13. 13.
    Cheng, H. H.; Chen, F.; Yu, J.; Guo, Z. X. Gold-nanoparticledecorated thermoplastic polyurethane electrospun fibers prepared through a chitosan linkage for catalytic applications. J. Appl. Polym. Sci. 2017, 134, 44336.Google Scholar
  14. 14.
    Xiong, X.; Li, Q.; Zhang, X. C.; Yu, J.; Guo, Z. X. Preparation, characterization and application of amine-functionalized poly(lactic acid) electrospun fibers. Chemical Journal of Chinese Universities (in Chinese) 2014, 35, 1323–1329.Google Scholar
  15. 15.
    Yuan, Z. Q.; Zhou, T.; Yin, Y. Y.; Cao, R.; Li, C. J.; Wang, Z. L. Transparent and flexible triboelectric sensing array for touch security applications. ACS Nano 2017, 11, 8364–8369.CrossRefGoogle Scholar
  16. 16.
    Yu, X. Q.; Zhang, W. S.; Zhang, P. P.; Su, Z. Q. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges. Biosens. Bioelectron. 2017, 89, 72–84.CrossRefGoogle Scholar
  17. 17.
    Zhang, M. F.; Zhao, X. N.; Zhang, G. H.; Wei, G.; Su, Z. Q. Electrospinning design of functional nanostructures for biosensor applications. J. Mater. Chem. B 2017, 5, 1699–1711.CrossRefGoogle Scholar
  18. 18.
    Su, Z. Q.; Ding, J. W.; Wei, G. Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Adv. 2014, 4, 52598–52610.CrossRefGoogle Scholar
  19. 19.
    Guan, X. Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Yan, X. R.; Shen, C. Y.; Guo, Z. H. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl. Mater. Interfaces 2016, 8, 14150–14159.CrossRefGoogle Scholar
  20. 20.
    Zheng, Y. J.; Li, Y. L.; Dai, K.; Liu, M. R.; Zhou, K. K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Compos. Part A Appl. Sci. Manuf. 2017, 101, 41–49.CrossRefGoogle Scholar
  21. 21.
    Lin, J. Y.; Tian, F.; Shang, Y. W.; Wang, F. J.; Ding, B.; Yu, J. Y. Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale 2012, 4, 5316–5320.CrossRefGoogle Scholar
  22. 22.
    Yu, R. M.; Shi, Y. Z.; Yang, D. Z.; Liu, Y. X.; Qu, J.; Yu, Z. Z. Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broadspectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 2017, 9, 21809–21819CrossRefGoogle Scholar
  23. 23.
    Liu, Y. M.; Li, Q.; Liu, H. H.; Cheng, H. H.; Yu, J.; Guo, Z. X. Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chinese J. Polym. Sci. 2017, 35, 713–720.CrossRefGoogle Scholar
  24. 24.
    Li, P.; Zhang, Z. F.; Su, Z. Q.; Wei, G. Thermosensitive polymeric micelles based on the triblock copolymer poly(D,L-lactide)-bpoly( N-isopropyl acrylamide)-b-poly(D,L-lactide) for controllable drug delivery. J. Appl. Polym. Sci. 2017, 134, 45304.CrossRefGoogle Scholar
  25. 25.
    Behrens, A. M.; Sikorski, M. J.; Kofinas, P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A 2014, 102, 4182–4194.CrossRefGoogle Scholar
  26. 26.
    Cheng, H. H.; Xiong, J.; Xie, Z. N.; Zhu, Y. T.; Liu, Y. M.; Wu, Z. Y.; Yu, J.; Guo, Z. X. Thrombin-loaded poly(butylene succinate)-based electrospun membranes for rapid hemostatic application. Macromol. Mater. Eng. 2018, 303, 1700395.CrossRefGoogle Scholar
  27. 27.
    Zhang, W. S.; Yu, X. Q.; Li, Y.; Su, Z. Q.; Jandt, K. D.; Wei, G. Proteinmimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog. Polym. Sci. 2018, 80, 94–124.CrossRefGoogle Scholar
  28. 28.
    Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J. M.; Sharifi, S.; Ramakrishna, S. A review of key challenges of electrospun scaffolds for tissue-engineering applications: Challenges regarding electrospun scaffolds: A review. J. Tissue Eng. Regen. Med. 2016, 10, 715–738.CrossRefGoogle Scholar
  29. 29.
    Dhandayuthapani, B.; Krishnan, U. M.; Sethuraman, S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 264–272.Google Scholar
  30. 30.
    Lee, J.; Tae, G.; Kim, Y. H.; Park, I. S.; Kim, S. H.; Kim, S. H. The effect of gelatin incorporation into electrospun poly(L-lactide-co-ɛ-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 2008, 29, 1872–1879.CrossRefGoogle Scholar
  31. 31.
    Chen, L.; Cheng, H. H.; Xiong, J.; Zhu, Y. T.; Zhang, H. P.; Xiong, X.; Liu, Y. M.; Yu, J.; Guo, Z. X. The effect of gelatin incorporation into electrospun poly(L-lactide-co-ɛ-caprolactone) fibers on mechanical properties and cytocompatibility. Chinese J. Polym. Sci. 2018, 36, 1063–1069.CrossRefGoogle Scholar
  32. 32.
    Zhang, B. Y.; Ge, Q. S.; Guo, Z. X.; Yu, J. Effects of electrically inert fillers on the properties of poly(m-xylene adipamide)/multiwalled carbon nanotube composites. Chinese J. Polym. Sci. 2016, 34, 1032–1038.CrossRefGoogle Scholar
  33. 33.
    Guo, Y. L.; Zhang, R. Z.; Wu, K.; Chen, F.; Fu, Q. Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Chinese J. Polym. Sci. 2017, 35, 1497–1507.CrossRefGoogle Scholar
  34. 34.
    Tan, Y. L.; Huang, C. H.; Guo, Z. X.; Yu, J. Water absorption characteristics of different polyamide resins and their effects on the diffusion and polymerization of St monomer. Chemical Journal of Chinese Universities (in Chinese) 2018, 39, 2825–2832.Google Scholar
  35. 35.
    Doudou, B. B.; Dargent, E.; Grenet, J. Crystallization and melting behaviour of poly(m-xylene adipamide). J. Therm. Anal. Calorim. 2006, 85, 409–415.CrossRefGoogle Scholar
  36. 36.
    Liu, H. H.; Li, Q.; Liang, X.; Xiong, X.; Yu, J.; Guo, Z. X. Antibacterial polycaprolactone electrospun fiber mats prepared by soluble eggshell membrane protein-assisted adsorption of silver nanoparticles. J. Appl. Polym. Sci. 2016, 133, 43850.Google Scholar
  37. 37.
    Feng, L. D.; Bian, X. C.; Li, G.; Chen, Z. M.; Cui, Y.; Chen, X. S. Determination of ultra-low glass transition temperature via differential scanning calorimetry. Polym. Test. 2013, 32, 1368–1372.CrossRefGoogle Scholar
  38. 38.
    Lim, H. S.; Park, S. H.; Koo, S. H.; Kwark, Y. J.; Thomas, E. L.; Jeong, Y. J.; Cho, J. H. Superamphiphilic Janus fabric. Langmuir 2010, 26, 19159–19162.CrossRefGoogle Scholar
  39. 39.
    Ma, M. L.; Hill, R. M.; Rutledge, G. C. A review of recent results on superhydrophobic materials based on micro- and nanofibers. J. Adhes. Sci. Technol. 2008, 22, 1799–1817.CrossRefGoogle Scholar
  40. 40.
    Li, H. Y.; Li, Y.; Yang, W. M.; Cheng, L. S.; Tan, J. Needleless meltelectrospinning of biodegradable poly(lactic acid) ultrafine fibers for the removal of oil from water. Polymers 2017, 9, 3.CrossRefGoogle Scholar
  41. 41.
    Qiao, Y.; Zhao, L. L.; Li, P.; Sun, H. X.; Li, S. Electrospun polystyrene/polyacrylonitrile fiber with high oil sorption capacity. J. Reinf. Plast. Compos. 2014, 33, 1849–1858.CrossRefGoogle Scholar
  42. 42.
    Ji, H.; Zhao, R.; Li, Y. M.; Sun, B. L.; Li, Y. Z.; Zhang, N.; Qiu, J.; Li, X.; Wang, C. Robust and durable superhydrophobic electrospun nanofibrous mats via a simple Cu nanocluster immobilization for oil-water contamination. Colloids Surf. Physicochem. Eng. Asp. 2018, 538, 173–183.CrossRefGoogle Scholar
  43. 43.
    Lin, J. Y.; Tian, F.; Shang, Y. W.; Wang, F. J.; Ding, B.; Yu, J. Y.; Guo, Z. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale 2013, 5, 2745–2755.CrossRefGoogle Scholar
  44. 44.
    Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Y. Controlling the secondary surface morphology of electrospun PVDF nanofibers by regulating the solvent and relative humidity. Nanoscale Res. Lett. 2018, 13, 285.CrossRefGoogle Scholar
  45. 45.
    Wang, J.; Hou, J. B.; Marquez, E.; Moore, R. B.; Nain, A. S. Aligned assembly of nano and microscale polystyrene tubes with controlled morphology. Polymer 2014, 55, 3008–3014.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lu Chen
    • 1
  • Xin-Lin Tuo
    • 1
  • Xi-Chuan Fan
    • 1
  • Chun-Jie Xie
    • 1
  • Bao-Hua Guo
    • 1
  • Jian Yu
    • 1
  • Ping Hu
    • 1
  • Zhao-Xia Guo
    • 1
    Email author
  1. 1.Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations