Monomer-activated Copolymerization of Ethylene Oxide and Epichlorohydrin: In Situ Kinetics Evidences Tapered Block Copolymer Formation

  • Ann-Kathrin Danner
  • Daniel Leibig
  • Lea-Marie Vogt
  • Holger FreyEmail author


The monomer-activated anionic ring-opening copolymerization (AROP) of ethylene oxide (EO) and epichlorohydrin (ECH) using tetraoctylammonium bromide as an initiator and triisobutylaluminum (i-Bu3Al) as an activator was studied. The properties of the copolymers as well as the microstructure have been analyzed in detail via an in situ NMR kinetics study. The statistical copolymers exhibited molecular weights ranging from 2350 gmol−1 to 38000 gmol−1 (measured by SEC, PEG-standards) and moderate dispersities of 1.27–1.44. The thermal property tests revealed both a glass transition and melting for all copolymers, supporting a block-like nature. Applying in situ NMR kinetic measurements, the reactivity ratios of EO and ECH were determined to be strongly disparate, i.e., rEO = 9.2 and rECH = 0.10. This shows that the simple one-pot statistical anionic copolymerization of EO and ECH via the monomer-activated AROP resulted in the formation of strongly tapered, block-like structures. Furthermore, post-polymerization functionalization of the reactive chloromethyl groups by nucleophilic displacement was investigated for the copolymers. Copolymerization of EO and ECH offers a broad platform for further functionalization and therefore the possibility to prepare a variety of multifunctional PEGs.


Epichlorohydrin Polymerization Ring-opening Copolymerization Reactivity ratios Epoxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



A. Danner is a recipient of a DFG-funded position through the Excellence Initiative by the Graduate School Materials Science in Mainz (GSC 266). The authors thank Dr. Johannes C. Liermann and Nadine Schenk for technical assistance during in situ NMR kinetics measurements as well as Maria Mueller and Monika Schmelzer for DSC and SEC measurements. Jan Blankenburg is acknowledged for help with the evaluation of in situ NMR data.

Supplementary material

10118_2019_2296_MOESM1_ESM.pdf (4.3 mb)
Monomer-activated Copolymerization of Ethylene Oxide and Epichlorohydrin: In Situ Kinetics Evidences Tapered Block Copolymer Formation


  1. 1.
    Frey, H.; Haag, R. Dendritic polyglycerol: A new versatile biocompatible material. Rev. Molecular Biotechnol. 2002, 90, 257–267.CrossRefGoogle Scholar
  2. 2.
    Kainthan, R. K.; Janzen, J.; Levin, E.; Devine, D. V.; Brooks, D. E. Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 2006, 7, 703–709.CrossRefGoogle Scholar
  3. 3.
    Thomas, A.; Müller, S. S.; Frey, H. Beyond poly(ethylene glycol): Linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromolecules 2014, 15, 1935–1954.CrossRefGoogle Scholar
  4. 4.
    Weinhart, M.; Grunwald, I.; Wyszogrodzka, M.; Gaetjen, L.; Hartwig, A.; Haag, R. Linear poly(methyl glycerol) and linear polyglycerol as potent protein and cell resistant alternatives to poly(ethylene glycol). Chem. Asian J. 2010, 5, 1992–2000.CrossRefGoogle Scholar
  5. 5.
    Gosecki, M.; Gadzinowski, M.; Gosecka, M.; Basinska, T.; Slomkowski, S. Polyglycidol, its derivatives, and polyglycidol-containing copolymers—Synthesis and medical applications. Polymers 2016, 8, 227.CrossRefGoogle Scholar
  6. 6.
    Calderón, M.; Quadir, M. A.; Sharma, S. K.; Haag, R. Dendritic polyglycerols for biomedical applications. Adv. Mater. 2010, 22, 190–218.CrossRefGoogle Scholar
  7. 7.
    Carlotti, S.; Labbé, A.; Rejsek, V.; Doutaz, S.; Gervais, M.; Deffieux, A. Living/controlled anionic polymerization and copolymerization of epichlorohydrin with tetraoctylammonium bromide-triisobutylaluminum initiating systems. Macromolecules 2008, 41, 7058–7062.CrossRefGoogle Scholar
  8. 8.
    Biedron, T.; Kubisa, P.; Penczek, S. Polyepichlorohydrin diols free of cyclics: Synthesis and characterization. J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 619–628.CrossRefGoogle Scholar
  9. 9.
    Vandenberg, E. J. Organometallic catalysts for polymerizing monosubstituted epoxides. J. Polym. Sci. 1960, 47, 486–489.CrossRefGoogle Scholar
  10. 10.
    Xie, H. Q.; Guo, J. S.; Yu, G. Q.; Zu, J. Ring-opening polymerization of epichlorohydrin and its copolymerization with other alkylene oxides by quaternary catalyst system. J. Appl. Polym. Sci. 2001, 80, 2446–2454.CrossRefGoogle Scholar
  11. 11.
    Wu, J.; Shen, Z. Rare earth coordination catalysts for the polymerization of alkylene oxides I. Polymerization of epichlorohydrin. Polym. J. 1990, 22, 326–330.CrossRefGoogle Scholar
  12. 12.
    Hsieh, H. L. Polymerization of alkylene oxides with trialkylaluminum, metal acetylacetonates, and water. J. Appl. Polym. Sci. 1971, 15, 2425–2438.CrossRefGoogle Scholar
  13. 13.
    Kuntz, I.; Kroll, W. R. Polymerization of epoxides with dialkylaluminum acetylacetonate catalyst systems. J. Polym. Sci., Part A: Polym. Chem. 1970, 8, 1601–1621.CrossRefGoogle Scholar
  14. 14.
    Yagci, Y.; Serhatli, I. E.; Kubisa, P.; Biedron, T. Synthesis of block copolymers by combination of an activated monomer and free radical polymerization mechanism. Macromolecules 1993, 26, 2397–2399.CrossRefGoogle Scholar
  15. 15.
    Xie, H. Q.; Pan, S. B.; Guo, J. S. Ring-opening copolymerization of epoxy-terminated polystyrene macromer with epichlorohydrin and study on properties of the copolymers. Eur. Polym. J. 2003, 39, 715–724.CrossRefGoogle Scholar
  16. 16.
    Royappa, A. T. On the copolymerization of epichlorohydrin and glycidol. J. Appl. Polym. Sci. 1997, 65, 1897–1904.CrossRefGoogle Scholar
  17. 17.
    Majid, M. A.; George, M. H.; Barrie, J. A. Living anionic synthesis and characterization of poly(epichlorohydrin-g-styrene) copolymers. Polymer 1981, 22, 1104–1111.CrossRefGoogle Scholar
  18. 18.
    Kohjiya, S.; Horiuchi, T.; Miura, K.; Kitagawa, M.; Sakashita, T.; Matoba, Y.; Ikeda, Y. Polymer solid electrolyte from amorphous poly[epichlorohydrin-co-(ethylene oxide)]/lithium perchlorate complex. Polym. Int. 2000, 49, 197–202.CrossRefGoogle Scholar
  19. 19.
    Kuntz, I.; Cozewith, C.; Oakley, H. T.; Via, G.; White, H. T.; Wilchinsky, Z. W. Epoxide copolymerization with the dialkylaluminum acetylacetonate-dialkylzinc-water catalyst system. Macromolecules 1971, 4, 4–10.CrossRefGoogle Scholar
  20. 20.
    Gervais, M.; Brocas, A. L.; Cendejas, G.; Deffieux, A.; Carlotti, S. Synthesis of linear high molar mass glycidol-based polymers by monomer-activated anionic polymerization. Macromolecules 2010, 43, 1778–1784.CrossRefGoogle Scholar
  21. 21.
    Gervais, M.; Brocas, A. L.; Cendejas, G.; Deffieux, A.; Carlotti, S. Linear high molar mass polyglycidol and its direct α-azido functionalization. Macromol. Symp. 2011, 308, 101–111.CrossRefGoogle Scholar
  22. 22.
    Billouard, C.; Carlotti, S.; Desbois, P.; Deffieux, A. “Controlled” high-speed anionic polymerization of propylene oxide initiated by alkali metal alkoxide/trialkylaluminum systems. Macromolecules 2004, 37, 4038–4043.CrossRefGoogle Scholar
  23. 23.
    Labbé, A.; Carlotti, S.; Billouard, C.; Desbois, P.; Deffieux, A. Controlled high-speed anionic polymerization of propylene oxide initiated by onium salts in the presence of triisobutylaluminum. Macromolecules 2007, 40, 7842–7847.CrossRefGoogle Scholar
  24. 24.
    Rejsek, V.; Sauvanier, D.; Billouard, C.; Desbois, P.; Deffieux, A.; Carlotti, S. Controlled anionic homo- and copolymerization of ethylene oxide and propylene oxide by monomer activation. Macromolecules 2007, 40, 6510–6514.CrossRefGoogle Scholar
  25. 25.
    Müller, S. S.; Moers, C.; Frey, H. A challenging comonomer pair: Copolymerization of ethylene oxide and glycidyl methyl ether to thermoresponsive polyethers. Macromolecules 2014, 47, 5492–5500.CrossRefGoogle Scholar
  26. 26.
    Heinen, S.; Rackow, S.; Schäfer, A.; Weinhart, M. A perfect match: Fast and truly random copolymerization of glycidyl ether monomers to thermoresponsive copolymers. Macromolecules 2017, 50, 44–53.CrossRefGoogle Scholar
  27. 27.
    Gervais, M.; Labbé, A.; Carlotti, S.; Deffieux, A. Direct synthesis of α-azido, ω-hydroxypolyethers by monomer-activated anionic polymerization. Macromolecules 2009, 42, 2395–2400.CrossRefGoogle Scholar
  28. 28.
    Rodriguez, C. G.; Ferrier, R. C.; Helenic, A.; Lynd, N. A. Ring-opening polymerization of epoxides: Facile pathway to functional polyethers via a versatile organoaluminum initiator. Macromolecules 2017, 50, 3121–3130.CrossRefGoogle Scholar
  29. 29.
    Lundberg, P.; Lee, B. F.; van den Berg, S. A.; Pressly, E. D.; Lee, A.; Hawker, C. J.; Lynd, N. A. Poly(ethylene oxide)-co-(methylene ethylene oxide): A hydrolytically-degradable poly(ethylene oxide) platform. ACS Macro Lett. 2012, 1, 1240–1243.CrossRefGoogle Scholar
  30. 30.
    Meyer, J.; Keul, H.; Möller, M. Poly(glycidyl amine) and copolymers with glycidol and glycidyl amine repeating units: Synthesis and characterization. Macromolecules 2011, 44, 4082–4091.CrossRefGoogle Scholar
  31. 31.
    Brocas, A. L.; Cendejas, G.; Caillol, S.; Deffieux, A.; Carlotti, S. Controlled synthesis of polyepichlorohydrin with pendant cyclic carbonate functions for isocyanate-free polyurethane networks. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2677–2684.CrossRefGoogle Scholar
  32. 32.
    Hu, H.; Yuan, W.; Lu, L.; Zhao, H.; Jia, Z.; Baker, G. L. Low glass transition temperature polymer electrolyte prepared from ionic liquid grafted polyethylene oxide. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2104–2110.CrossRefGoogle Scholar
  33. 33.
    Deng, M; Guo, F.; Liao, D.; Hou, Z.; Li, Y. Aluminium-catalyzed terpolymerization of furfuryl glycidyl ether with epichlorohydrin and ethylene oxide: Synthesis of thermoreversible polyepichlorohydrin elastomers with furan/maleimide covalent crosslinks. Polym. Chem. 2018, 9, 98–107.CrossRefGoogle Scholar
  34. 34.
    Deng, M; Guo, F.; Li, Y.; Hou, Z. Synthesis of alkynyl-functionalized linear and star polyethers by aluminium-catalyzed copolymerization of glycidyl 3-butynyl ether with epichlorohydrin and ethylene oxide. Polym. Chem. 2019, 10, 1110–1118.CrossRefGoogle Scholar
  35. 35.
    Chipara, M. I.; Barb, D.; Notingher, P. V.; Georgescu, L.; Sarbu, T. Spin probe investigation of molecular motions in polyepichlorohydrin: 1. Polymer 1996, 37, 707–712.CrossRefGoogle Scholar
  36. 36.
    Mandelkern, L. The crystallization of flexible polymer molecules. Chem. Rev. 1956, 56, 903–958.CrossRefGoogle Scholar
  37. 37.
    Herzberger, J.; Leibig, D.; Liermann, J. C.; Frey, H. Conventional oxyanionic versus monomer-activated anionic copolymerization of ethylene oxide with glycidyl ethers: Striking differences in reactivity ratios. ACS Macro Lett. 2016, 5, 1206–1211.CrossRefGoogle Scholar
  38. 38.
    Blankenburg, J.; Wagner, M.; Frey, H. Well-defined multi-amino-functional and stimuli-responsive poly(propylene oxide) by crown ether assisted anionic ring-opening polymerization. Macromolecules 2017, 50, 8885–8893.CrossRefGoogle Scholar
  39. 39.
    Obermeier, B.; Wurm, F.; Mangold, C.; Frey, H. Multifunctional poly(ethylene glycol)s. Angew. Chem. Int. Ed. 2011, 50, 7988–7997.CrossRefGoogle Scholar
  40. 40.
    Clayden, J.; Greeves, N.; Warren, S. G. Organic chemistry, 2. ed.; Oxford Univ. Press, Oxford, 2012.Google Scholar
  41. 41.
    Tang, T.; Fan, X.; Jin, Y.; Wang, G. Synthesis and characterization of graft copolymers with poly(epichlorohydrin-co-ethylene oxide) as backbone by combination of ring-opening polymerization with living anionic polymerization. Polymer 2014, 55, 3680–3687.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ann-Kathrin Danner
    • 1
    • 2
  • Daniel Leibig
    • 1
    • 2
  • Lea-Marie Vogt
    • 1
  • Holger Frey
    • 1
    Email author
  1. 1.Institute of Organic ChemistryJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Graduate School Materials Science in MainzMainzGermany

Personalised recommendations