Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1215–1223 | Cite as

Efficient Addition Polymerization of Norbornene with Polar Norbornene Derivatives by Neutral Nickel(II) Catalysts

  • Ling Guo
  • Yan-Ping Zhang
  • Hong-Liang Mu
  • Li PanEmail author
  • Kai-Ti Wang
  • Huan Gao
  • Bin Wang
  • Zhe Ma
  • Yue-Sheng Li


A series of nickel complexes {4a: [(2,6-iPr2C6H3)N=CHC16H12O]Ni(Me)(Py), 4b: [(2,6-iPr2C6H2OCH3)N=CHC16H12O]-Ni(Me)(Py), 4c: [(2,6-iPr2C6H2Cl)N=CHC16H12O]Ni(Me)(Py), and 4d: [(2,6-iPr2C6H2CF3)N=CHC16H12O]Ni(Me)(Py)} based on β-ketiminato ligands bearing various electron-donating or electron-withdrawing substituents on the para-position of the aniline group were synthesized and unambiguously characterized. The X-ray crystallographic analysis showed that complexes 4b and 4d adopted a near-square-planar geometry, and the anilines bearing a para-OMe or −CF3 group were found to situate on the axial position of the metal center. All complexes exhibited high activities up to 1.25 × 107–1.35 × 107 gPNB·molNi−1·h−1 toward norbornene (NBE) addition polymerization (conversion > 91.2% in 2 min) under low loading of B(C6F5)3 (B/Ni = 3) at 30 °C, affording polymers with high molecular weight up to 2.54 × 106–3.18 × 106. Different levels of decrease in catalytic activities could be observed for all catalysts as the reaction temperature increased; 4d bearing a strong electron-withdrawing −CF3 group showed the highest activity at 70 °C, while others exhibited notable decrease in catalytic activity with the raise in reaction temperature. Complexes 4a–4d showed remarkable tolerance to polar groups and could efficiently promote the copolymerization of NBE with its polar derivatives, including NBE bearing small acetate and hydroxyl group, as well as bulky oligomers, yielding copolymers with high functional NBE incorporations. Novel NBE copolymers with high functional comonomer incorporations and improved solubility were obtained in high yields.


Neutral nickel catalysts Norbornene Norbornene derivatives Vinyl-type polymerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21574097 and 21690071).

Supplementary material

10118_2019_2292_MOESM1_ESM.pdf (871 kb)
Efficient Addition Polymerization of Norbornene with Polar Norbornene Derivatives by Neutral Nickel(II) Catalysts


  1. 1.
    Pierre, F.; Commarieu, B.; Tavares, A. C.; Claverie, J. High T g sulfonated insertion polynorbornene ionomers prepared by catalytic insertion polymerization. Polymer2016, 86, 91–97.CrossRefGoogle Scholar
  2. 2.
    Mandal, M.; Huang, G.; Kohl, P. A. Anionic multiblock co-polymer membrane based on vinyl addition polymerization of norbornenes: Applications in anion-exchange membrane fuel cells. J. Membr. Sci.2019, 570, 394–402.CrossRefGoogle Scholar
  3. 3.
    Chapala, P. P.; Bermeshev, M. V.; Starannikova, L. E.; Belov, N. A.; Ryzhikh, V. E.; Shantarovich, V. P.; Lakhtin, V. G.; Gavrilova, N. N.; Yampolskii, Y. P.; Finkelshtein, E. S. A novel, highly gas-permeable polymer representing a new class of silicon-containing polynorbornens as efficient membrane materials. Macromolecules2015, 48, 8055–8061.CrossRefGoogle Scholar
  4. 4.
    Maroon, C. R.; Townsend, J.; Gmernicki, K. R.; Harrigan, D. J.; Sundell, B. J.; Lawrence, J. A.; Mahurin, S. M.; Vogiatzis, K. D.; Long, B. K. Elimination of CO2/N2 langmuir sorption and promotion of “N2-phobicity” within high-T g glassy membranes. Macromolecules2019, 52, 1589–1600.CrossRefGoogle Scholar
  5. 5.
    Kang, B. G.; Kim, D. G.; Register, R. A. Vinyl addition co-polymers of norbornylnorbornene and hydroxyhexafluoroisopropylnorbornene for efficient recovery of n-butanol from dilute aqueous solution via pervaporation. Macromolecules2018, 51, 3702–3710.CrossRefGoogle Scholar
  6. 6.
    Kim, D. G.; Takigawa, T.; Kashino, T.; Burtovyy, O.; Bell, A.; Register, R. A. Hydroxyhexafluoroisopropylnorbornene block and random copolymers via vinyl addition polymerization and their application as biobutanol pervaporation membranes. Chem. Mater.2015, 27, 6791–6801.CrossRefGoogle Scholar
  7. 7.
    Park, J. H.; Koh, T. W.; Chung, J.; Park, S. H.; Eo, M.; Do, Y.; Yoo, S.; Lee, M. H. Polynorbornene copolymer with side-chain iridium(III) emitters and carbazole hosts: A single emissive layer material for highly efficient electrophosphorescent devices. Macromolecules2013, 46, 674–682.CrossRefGoogle Scholar
  8. 8.
    Park, J. H.; Koh, T. W.; Do, Y.; Lee, M. H.; Yoo, S. Soluble polynorbornenes with pendant carbazole derivatives as host materials for highly efficient blue phosphorescent organic light-emitting diodes. J. Polym. Sci., Part A: Polym. Chem.2012, 50, 2356–2365.CrossRefGoogle Scholar
  9. 9.
    Bermeshev, M. V.; Chapala, P. P. Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties. Prog. Polym. Sci.2018, 84, 1–46.CrossRefGoogle Scholar
  10. 10.
    Blank, F.; Janiak, C. Metal catalysts for the vinyl/addition polymerization of norbornene. Coord. Chem. Rev.2009, 253, 827–861.CrossRefGoogle Scholar
  11. 11.
    Chen, L.; Zhong, Z.; Chen, C.; He, X.; Chen, Y. N,O-chelating bidentate Ni (II) and Pd (II) complexes for copolymerization of norbornene and norbornene ester. J. Organomet. Chem.2014, 752, 100–108.CrossRefGoogle Scholar
  12. 12.
    Kim, D. G.; Bell, A.; Register, R. A. Living vinyl addition polymerization of substituted norbornenes by a t-Bu3P-ligated methylpalladium complex. ACS Macro Lett.2015, 4, 327–330.CrossRefGoogle Scholar
  13. 13.
    Eo, M.; Lee, S.; Park, M. H.; Lee, M. H.; Yoo, S.; Do, Y. Vinyl-type polynorbornenes with pendant PCBM: A novel acceptor for organic solar cells. Macromol. Rapid Commun.2012, 33, 1119–1125.CrossRefGoogle Scholar
  14. 14.
    He, F.; Chen, Y.; He, X.; Chen, M.; Zhou, W.; Wu, Q. Copolymerization of norbornene and 5-norbornene-2-yl acetate using novel bis(β-ketonaphmylamino)Ni(II)/B(C6F5)3/AlEt3 catalytic system. J. Polym. Sci., Part A: Polym. Chem.2009, 47, 3990–4000.CrossRefGoogle Scholar
  15. 15.
    He, X.; Deng, Y.; Jiang, X.; Wang, Z.; Yang, Y.; Han, Z.; Chen, D. Copolymerization of norbornene and butyl methacrylate at elevated temperatures by a single centre nickel catalyst bearing bulky bis(α-diimine) ligand with strong electron-withdrawing groups. Polym. Chem.2017, 8, 2390–2396.CrossRefGoogle Scholar
  16. 16.
    He, X.; Yang, Y.; Wang, S.; Han, Z.; Tu, G.; Zhang, F.; Huang, S.; Wang, Z.; Chen, D. Synthesis of bis-(benzocyclohexanketoimino) Ni(II) with different electron groups and their catalytic copolymerization of norbornene and polar norbornene. RSC Adv.2017, 7, 48745–48753.CrossRefGoogle Scholar
  17. 17.
    Tian, J.; He, X.; Liu, J.; Deng, X.; Chen, D. Synthesis of well-defined C—C bridged Ni(II) complexes bearing β-ketoiminato-fluorene ligands by bifluorenyl in situ coupling and application for norbornene (co)polymerization. RSC Adv.2015, 5, 61851–61860.CrossRefGoogle Scholar
  18. 18.
    He, J.; Liu, Z.; Du, G.; Fu, Y.; Zhang, S.; Li, X. Chiral palladium(II) and nickel(II) complexes C2-symmetrical tridentate bis(oxazoline) ligands: Synthesis, characterization, and catalytic norbornene polymerization. Organometallics2014, 33, 6103–6112.CrossRefGoogle Scholar
  19. 19.
    Chen, C. Designing catalysts for olefin polymerization and co-polymerization: Beyond electronic and steric tuning. Nat. Rev. Chem.2018, 2, 6–14.CrossRefGoogle Scholar
  20. 20.
    Tan, C.; Pang, W. M.; Chen, C. L. A phenol-containing α-diimine ligand for nickel- and palladium-catalyzed ethylene polymerization. Chinese J. Polym. Sci.2019, DOI: Scholar
  21. 21.
    Wang, F. Z.; Tian, S. S.; Li, R. P.; Li, W. M.; Chen, C. L. Ligand steric effects on naphthyl-α-diimine nickel catalyzed α-olefin polymerization. Chinese J. Polym. Sci.2017, 56, 157–162.Google Scholar
  22. 22.
    Liao, H.; Gao, J.; Zhong, L.; Gao, H. Y.; Wu, Q. Regioselective polymerizations of α-olefins with an α-diamine nickel catalyst. Chinese J. Polym. Sci.2019, DOI: Scholar
  23. 23.
    Zheng, T.; Liao, H.; Gao, J.; Zhong, L.; Gao, H.; Wu, Q. Synthesis and characterization of α-diamine palladium complexes and insight into hybridization effects of nitrogen donor atoms on norbornene (co)polymerizations. Polym. Chem.2018, 9, 3088–3097.CrossRefGoogle Scholar
  24. 24.
    Antonov, A. A.; Semikolenova, N. V.; Zakharov, V. A.; Zhang, W.; Wang, Y.; Sun, W. H.; Talsi, E. P.; Bryliakov, K. P. Vinyl polymerization of norbornene on nickel complexes with bis(imino)pyridine ligands containing electron-withdrawing groups. Organometallics2012, 31, 1143–1149.CrossRefGoogle Scholar
  25. 25.
    Carlini, C.; Martinelli, M.; Galletti, A. M. R.; Sbrana, G. Vinyl polymerization of norbornene by bis(nitro-substituted-salicylaldiminate)nickel(II)/methylaluminoxane catalysts. J. Polym. Sci., Part A: Polym. Chem.2006, 44, 1514–1521.CrossRefGoogle Scholar
  26. 26.
    Zeng, Y.; Mahmood, Q.; Zhang, Q.; Liang, T.; Sun, W. H. Vinyl homo/copolymerization of norbornene and ethylene using sterically enhanced 1,2-bis(arylimino)acenaphthene-palladium precatalysts. J. Polym. Sci., Part A: Polym. Chem.2018, 56, 922–930.CrossRefGoogle Scholar
  27. 27.
    Zeng, Y.; Mahmood, Q.; Zhang, Q.; Liang, T.; Sun, W. H. Highly thermo-stable and electronically controlled palladium precatalysts for vinyl homo/co-polymerization of norbornene-ethylene. Eur. Polym. J.2018, 103, 342–350.CrossRefGoogle Scholar
  28. 28.
    Zhang, Y.; Mu, H.; Li, Y.; Li, Y. Phosphine (oxide)-(thio) phenolate palladium complexes: Synthesis, characterization and (co)polymerization of norbornene. Appl. Organomet. Chem.2018, 52, e4013.CrossRefGoogle Scholar
  29. 29.
    Zhang, Y. P.; Li, W.; Li, B. X.; Mu, H. L.; Li, Y. S. Well-defined phosphino-phenolate neutral nickel(II) catalysts for efficient (co)polymerization of norbornene and ethylene. Dation Trans.2015, 44, 7382–7394.Google Scholar
  30. 30.
    Song, D. P.; Wang, Y. X.; Mu, H. L.; Li, B. X.; Li, Y. S. Observations and mechanistic insights on unusual stability of neutral nickel complexes with a sterically crowded metal center. Organometallics2011, 50, 925–934.CrossRefGoogle Scholar
  31. 31.
    Nguyen, P.; Corpuz, E.; Heidelbaugh, M. T.; Chow, K.; Garst, E. M. A convenient synthesis of 7-halo-1-indanones and 8-halo-1-tetralones. J. Org. Chem.2003, 68, 10195–10198.CrossRefGoogle Scholar
  32. 32.
    Gelat, F.; Richard, V.; Berger, O.; Montchamp, J. L. Development of a new family of chiral auxiliaries. Org. Lett.2015, 17, 1819–1821.CrossRefGoogle Scholar
  33. 33.
    Elie, M.; Sguerra, F.; Di Meo, F.; Weber, M. D.; Marion, R.; Grimault, A.; Lohier, J. F.; Stallivieri, A.; Brosseau, A.; Pansu, R. B.; Renaud, J. L.; Linares, M.; Hamel, M.; Costa, R. D.; Gaillard, S. Designing NHC-copper(I) dipyridylamine complexes for blue light-emitting electrochemical cells. ACS Appl. Mater. Interfaces2016, 8, 14678–14691.CrossRefGoogle Scholar
  34. 34.
    Hospital, A.; Gibard, C.; Gaulier, C.; Nauton, L.; Thery, V.; El-Ghozzi, M.; Avignant, D.; Cisnetti, F.; Gautier, A. Access to functionalised silver(I) and gold(I) N-heterocyclic carbenes by [2 + 3] dipolar cycloadditions. Dalton Trans.2012, 41, 6803–6812.CrossRefGoogle Scholar
  35. 35.
    Lane, T. K.; D’Souza, B. R.; Louie, J. Iron-catalyzed formation of 2-aminopyridines from diynes and cyanamides. J. Org. Chem.2012, 77, 7555–7563.CrossRefGoogle Scholar
  36. 36.
    Lane, T. K.; Nguyen, M. H.; D’Souza, B. R.; Spahn, N. A.; Louie, J. The iron-catalyzed construction of 2-aminopyrimidines from alkynenitriles and cyanamides. Chem. Commun.2013, 49, 7735–7737.CrossRefGoogle Scholar
  37. 37.
    Popeney, C.; Guan, Z. Ligand electronic effects on late transition metal polymerization catalysts. Organometallics2005, 24, 1145–1155.CrossRefGoogle Scholar
  38. 38.
    Dai, S.; Sui, X.; Chen, C. Highly robust palladium(II) x-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed.2015, 54, 9948–9953.CrossRefGoogle Scholar
  39. 39.
    Li, M.; Shu, X.; Cai, Z.; Eisen, M. S. Synthesis, structures, and norbornene polymerization behavior of neutral nickel(II) and palladium(II) complexes bearing aryloxide imidazolidin-2-imine ligands. Organometallics2018, 57, 1172–1180.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ling Guo
    • 1
  • Yan-Ping Zhang
    • 1
  • Hong-Liang Mu
    • 2
  • Li Pan
    • 1
    Email author
  • Kai-Ti Wang
    • 3
  • Huan Gao
    • 1
  • Bin Wang
    • 1
  • Zhe Ma
    • 1
  • Yue-Sheng Li
    • 1
    • 4
  1. 1.Tianjin Key Lab of Composite & Functional Materials, School of Material Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.School of Materials Science and EngineeringChongqing University of TechnologyChongqingChina
  4. 4.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations