Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1290–1297 | Cite as

Simulation Study on the Extension of Semi-flexible Polymer Chains in Cylindrical Channel

  • Yu Fu
  • Fan Wu
  • Jian-Hua Huang
  • Ying-Cai Chen
  • Meng-Bo LuoEmail author
Article
  • 21 Downloads

Abstract

The scaling relations among the mean end-to-end distance of polymer along the channel < R >, the polymer length N, and the effective diameter of channel De were investigated for flexible and semi-flexible polymer chains confined in long cylindrical channels. For the flexible polymer chain, scaling relation < R > ∼ NDe-0.7 was found in the classic de Gennes regime at lp2/b < De < Rg with lp the persistence length, b the bond length, and Rg the radius of gyration of polymer. For the semi-flexible polymer, <R > ∼ NDe-1 in the transition regime lp < De < xlp (x > 1) and <R > ∼ De-0.7 in the classic de Gennes regime at larger De > xlp were observed. The simulation results revealed that the scaling relation in the transition regime was due to the rod-like behavior of the semi-flexible polymer in the small regime lp < De < xlp.

Keywords

Semi-flexible polymer Cylindrical channel Conformation Scaling relation Monte Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21574117 and 11674277), and Zhejiang Provincial Natural Science Foundation of China (No. LY16A040004).

References

  1. 1.
    Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular biology of the cell. 4th Edition, Garland Science, New York, 2002.Google Scholar
  2. 2.
    Singer, S. J. The structure and insertion of integral proteins in membranes. Annu. Rev. Cell Biol.1990, 6, 247–296.PubMedGoogle Scholar
  3. 3.
    Schatz, G.; Dobberstein, B. Common principles of protein translocation across membranes. Science1996, 271, 1519–1526.PubMedGoogle Scholar
  4. 4.
    Odijk, T. Scaling theory of DNA confined in nanochannels and nanoslits. Phys. Rev. E2008, 77, 060901.Google Scholar
  5. 5.
    Chen, J. Z. Y. Free energy and extension of a wormlike chain in tube confinement. Macromolecules2013, 46, 9837–9844.Google Scholar
  6. 6.
    Reisner, W.; Morton, K. J.; Riehn, R.; Wang, Y. M.; Yu, Z.; Rosen, M.; Sturm, J. C.; Chou, S. Y.; Frey, E.; Austin, R. H. Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett.2005, 94, 196101.PubMedGoogle Scholar
  7. 7.
    Marciel, A. B.; Schroeder, C. M. New directions in single polymer dynamics. J. Polym. Sci., Part B: Polym. Phys.2013, 51, 556–566.Google Scholar
  8. 8.
    Wang, Y.; Tree, D. R.; Dorfman, K. D. Simulation of DNA extension in nanochannels. Macromolecules2011, 44, 6594–6604.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Tree, D. R.; Wang, Y.; Dorfman, K. D. Extension of DNA in a nanochannel as a rod-to-coil transition. Phys. Rev. Lett.2013, 110, 208103.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Fu, C. L.; Sun, Z. Y.; An, L. J. The properties of a single polymer chain in solvent confined in a slit: A molecular dynamics simulation. Chinese J. Polym. Sci.2013, 31, 388–398.Google Scholar
  11. 11.
    Dai, L.; van der Maarel, J.; Doyle, P. S. Extended de Gennes regime of DNA confined in a nanochannel. Macromolecules2014, 47, 2445–2450.Google Scholar
  12. 12.
    Hao, J. L.; Wang, Z.; Wang, Z.; Yin, Y. H.; Jiang, R.; Li, B. H. Simulation of asymmetric deblock copolymer films confined between two flat walls and upon solvent evaporation. Acta Polymerica Sinica (in Chinese) 2017, 1841–1850.Google Scholar
  13. 13.
    Chen, Y. L.; Graham, M. D.; Pablo, J. J.; Randall, G. C.; Gupta, M.; Doyle, P. S. Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels. Phys. Rev. E2004, 70, 060901.Google Scholar
  14. 14.
    Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci.1996, 93, 13770–13773.PubMedGoogle Scholar
  15. 15.
    Hsieh, C. C.; Balducci, A.; Doyle, P. S. An experimental study of DNA rotational relaxation time in nanoslits. Macromolecules2007, 40, 5196–5205.Google Scholar
  16. 16.
    Liu, L.; Yang, C.; Zhao, K.; Li, J.; Wu, H. C. Ultrashort singlewalled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun.2013, 4, 2989.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang, Y. B.; Sun, Z. Y.; An, L. J. Monte Carlo simulation study of channel confinement influence on polymer chain entanglement. Acta Polymerica Sinica (in Chinese) 2011, 554–559.Google Scholar
  18. 18.
    Reisner, W.; Pedersen, J. N.; Austin, R. H. DNA confinement in nanochannels: Physics and biological applications. Rep. Prog. Phys.2012, 75, 106601.PubMedGoogle Scholar
  19. 19.
    Chen, J. Z. Y. Theory of wormlike polymer chains in confinement. Prog. Polym. Sci.2016, 54–55, 3–46.Google Scholar
  20. 20.
    Milchev, A. Single-polymer dynamics under constraints: Scaling theory and computer experiment. J. Phys. Condens. Matter2011, 23, 103101.PubMedGoogle Scholar
  21. 21.
    Dai, L.; Renner, C. B.; Doyle, P. S. The polymer physics of single DNA confined in nanochannels. Adv. Colloid Interface Sci.2016, 232, 80–100.PubMedGoogle Scholar
  22. 22.
    Wang, Z. H.; Wang, J.; Lu, Y. Y. Static and dynamic properties of confined polymer chains. J. Funct. Polym.2018, 31, 1–15.Google Scholar
  23. 23.
    de Gennes, P. G. Scaling concepts in polymer physics. Cornell University Press, Ithaca, New York, 1979.Google Scholar
  24. 24.
    Brochard, F.; de Gennes, P. G. Dynamics of confined polymer chains. J. Chem. Phys.1977, 67, 52–56.Google Scholar
  25. 25.
    de Gennes, P. G.; Pincus, P. R.; Velasco, M.; Brochard, F. Remarks on polyelectrolyte conformation. J. de Phys.1976, 37, 1461–1473.Google Scholar
  26. 26.
    Ha, B. Y.; Jung, Y. Polymers under confinement: Single polymers, how they interact, and as model chromosomes. Soft Matter2015, 11, 2333–2352.PubMedGoogle Scholar
  27. 27.
    Li, B.; Madras, N.; Sokal, A. D. Critical exponents, hyperscaling and universal amplitude ratios for two- and three-dimensional self-avoiding walks. J. Stat. Phys.1995, 80, 661–754.Google Scholar
  28. 28.
    Arnold, A.; Bozorgui, B.; Frenkel, D.; Ha, B. Y.; Jun, S. Unexpected relaxation dynamics of a self-avoiding polymer in cylindrical confinement. J. Chem. Phys.2007, 127, 164903.PubMedGoogle Scholar
  29. 29.
    Dai, L.; Jones, J. J.; van der Marrel, J. R. C.; Doyle, P. S. A systematic study of DNA conformation in slitlike confinement. Soft Matter2012, 8, 2972–2982.Google Scholar
  30. 30.
    Cifra, P.; Benkova, Z.; Bleha, T. Chain extension of DNA confined in channels. J. Phys. Chem. B2009, 113, 1843–1851.PubMedGoogle Scholar
  31. 31.
    Cifra, P. Channel confinement of flexible and semiflexible macromolecules. J. Chem. Phys.2009, 131, 224903.PubMedGoogle Scholar
  32. 32.
    Huang, J. H.; Ma, Z. X.; Luo, M. B. Self-assembly of rod-coil deblock copolymers within a rod-selective slit: A dissipative particle dynamics simulation study. Langmuir2014, 30, 6267–6273.PubMedGoogle Scholar
  33. 33.
    Zhang, X.; Bao, L.; Wu, Y. Y.; Zhu, X. L.; Tan, Z. J. Radial distribution function of semiflexible oligomers with stretching flexibility. J. Chem. Phys.2017, 147, 054901.PubMedGoogle Scholar
  34. 34.
    Hegde, G. A.; Chang, J. F.; Chen, Y. L.; Khare, R. Conformation and diffusion hehavior of ring polymers in solution: A comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations. J. Chem. Phys.2011, 135, 184901.PubMedGoogle Scholar
  35. 35.
    Jiang, Z.; Dou, W.; Sun, T.; Shen, Y.; Cao, D. Effects of chain flexibility on the conformational behavior of a single polymer chain. J. Polym. Res.2015, 22, 236.Google Scholar
  36. 36.
    Schellman, J. A. Flexibility of DNA. Biopolymers1974, 13, 217–226.PubMedGoogle Scholar
  37. 37.
    Wang, F. H.; Wu, Y. Y.; Tan, Z. J. Salt contribution to the flexibility of single-stranded nucleic acid of finite length. Biopolymers2013, 99, 370–381.PubMedGoogle Scholar
  38. 38.
    Odijk, T. On the statistics and dynamics of confined or entangled stiff polymers. Macromolecules1983, 16, 1340–1344.Google Scholar
  39. 39.
    Yang, Y.; Burkhardt, T. W.; Gompper, G. Free energy and extension of a semiflexible polymer in cylindrical confining geometries. Phys. Rev. E2007, 76, 011804.Google Scholar
  40. 40.
    Chen, J. Z. Y. Self-avoiding wormlike chain confined in a cylindrical tube: Scaling behavior. Phys. Rev. Lett.2018, 121, 037801.PubMedGoogle Scholar
  41. 41.
    Dai, L.; Doyle, P. S. Comparisons of a polymer in confinement versus applied force. Macromolecules2013, 46, 6336–6344.Google Scholar
  42. 42.
    Li, A. B.; Yao, Y. G.; Xu, H. Stiffness and excluded volume effects on conformation and dynamics of polymers: A simulation study. Chinese J. Polym. Sci.2012, 30, 350–358.Google Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu Fu
    • 1
  • Fan Wu
    • 1
  • Jian-Hua Huang
    • 2
  • Ying-Cai Chen
    • 3
  • Meng-Bo Luo
    • 1
    Email author
  1. 1.Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.Department of ChemistryZhejiang Sci-Tech UniversityHangzhouChina
  3. 3.Department of PhysicsTaizhou UniversityTaizhouChina

Personalised recommendations