Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 10, pp 951–958 | Cite as

Recent Progress on COS-derived Polymers

  • Cheng-Jian Zhang
  • Xing-Hong ZhangEmail author
Review

Abstract

The synthesis of sulfur-containing polymer, a very promising functional material, has made a great progress in the past several years. This review is focused on the very recent advances in poly(monothiocarbonate)s derived from carbonyl sulfide (COS) and epoxides including biomass-derived epoxides. Of significance, metal-free catalyst systems, including triethyl borane/Lewis base pair and thiourea/Lewis base pair are developed for the alternating copolymerization of COS with epoxides. Thereof, the thiourea/Lewis base pair is highly active to the copolymerization of COS with epoxide in a living manner. Moreover, a series of crystalline poly(monothiocarbonate)s are presented, including the copolymers derived from COS with oxetane, ethylene oxide, enantiopure epichlorohydrin, and achiral meso-epoxides via enantioselective copolymerization. Based on these COS/epoxide copolymerization process, a variety of COS-based block copolymers with well-defined structure are presented.

Keywords

Carbonyl sulfide Epoxide Copolymerization Poly(monothiocarbonate) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21774108) and the Distinguished Young Investigator Fund of Zhejiang Province (No. LR16B040001).

References

  1. 1.
    Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 2018, 118, 839–885.CrossRefGoogle Scholar
  2. 2.
    Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354.CrossRefGoogle Scholar
  3. 3.
    Raffa, P.; Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A. Polymeric surfactants: Synthesis, properties, and links to applications. Chem. Rev. 2015, 115, 8504–8563.CrossRefGoogle Scholar
  4. 4.
    Zhu, J. B.; Watson, E. M.; Tang, J.; Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 2018, 360, 398–403.CrossRefGoogle Scholar
  5. 5.
    Hong, M.; Chen, J.; Chen, E. Y. X. Polymerization of polar monomers mediated by main-group Lewis acid-base pairs. Chem. Rev. 2018, 118, 10551–10616.CrossRefGoogle Scholar
  6. 6.
    Mutlu, H.; Ceper, E. B.; Li, X.; Yang, J.; Dong, W.; Ozmen, M. M.; Theato, P. Sulfur chemistry in polymer and materials science. Macromol. Rapid Commun. 2019, 40, 1800650.CrossRefGoogle Scholar
  7. 7.
    Sarapas, J. M.; Tew, G. N. Thiol-ene step-growth as a versatile route to functional polymers. Angew. Chem. Int. Ed. 2016, 55, 15860–15863.CrossRefGoogle Scholar
  8. 8.
    Ochiai, B.; Endo, T. Carbon dioxide and carbon disulfide as resources for functional polymers. Prog. Polym. Sci. 2005, 30, 183–215.CrossRefGoogle Scholar
  9. 9.
    Luo, M.; Li, Y.; Zhang, Y. Y.; Zhang, X. H. Using carbon dioxide and its sulfur analogues as monomers in polymer synthesis. Polymer 2016, 82, 406–431.CrossRefGoogle Scholar
  10. 10.
    He, L.; Zhao, H.; Theato, P. No heat, no light—The future of sulfur polymers prepared at room temperature is bright. Angew. Chem. Int. Ed. 2018, 57, 13012–13014.CrossRefGoogle Scholar
  11. 11.
    Yuan, J.; Xiong, W.; Zhou, X.; Zhang, Y.; Shi, D.; Li, Z.; Lu, H. 4-Hydroxyproline-derived sustainable polythioesters: Controlled ring-opening polymerization, complete recyclability, and facile functionalization. J. Am. Chem. Soc. 2019, 141, 4928–4935.CrossRefGoogle Scholar
  12. 12.
    Qin, A.; Lam, J. W. Y.; Tang, B. Z. Click polymerization: Progresses, challenges, and opportunities. Macromolecules 2010, 43, 8693–8702.CrossRefGoogle Scholar
  13. 13.
    Diebler, J.; Komber, H.; Häußler, L.; Lederer, A.; Werner, T. Alkoxide-initiated regioselective coupling of carbon disulfide and terminal epoxides for the synthesis of strongly alternating copolymers. Macromolecules 2016, 49, 4723–4731.CrossRefGoogle Scholar
  14. 14.
    Nakano, K.; Tatsumi, G.; Nozaki, K. Synthesis of sulfur-rich polymers: Copolymerization of episulfide with carbon disulfide by using [PPN]Cl/(salph)Cr(III)Cl system. J. Am. Chem. Soc. 2007, 129, 15116.CrossRefGoogle Scholar
  15. 15.
    Chung, W. J.; Simmonds, A. G.; Griebel, J. J.; Kim, E. T.; Suh, H. S.; Shim, I. B.; Glass, R. S.; Loy, D. A.; Theato, P.; Sung, Y. E.; Char, K.; Pyun, J. Elemental sulfur as a reactive medium for gold nanoparticles and nanocomposite materials. Angew. Chem. Int. Ed. 2011, 50, 11409–11412.CrossRefGoogle Scholar
  16. 16.
    Bearinger, J. P.; Terrettaz, S.; Michel, R.; Tirelli, N.; Vogel, H.; Textor, M.; Hubbell, J. A. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat. Mater. 2003, 2, 259.CrossRefGoogle Scholar
  17. 17.
    Napoli, A.; Valentini, M.; Tirelli, N.; Müller, M.; Hubbell, J. A. Oxidation-responsive polymeric vesicles. Nat. Mater. 2004, 3, 183.CrossRefGoogle Scholar
  18. 18.
    Lim, J.; Pyun, J.; Char, K. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials. Angew. Chem. Int. Ed. 2015, 54, 3249–3258.CrossRefGoogle Scholar
  19. 19.
    Je, S. H.; Buyukcakir, O.; Kim, D.; Coskun, A. Direct utilization of elemental sulfur in the synthesis of microporous polymers for natural gas sweetening. Chem 2016, 1, 482–493.CrossRefGoogle Scholar
  20. 20.
    Griebel, J. J.; Glass, R. S.; Char, K.; Pyun, J. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense. Prog. Polym. Sci. 2016, 58, 90–125.CrossRefGoogle Scholar
  21. 21.
    Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi, Á.; Theato, P.; Mackay, M. E.; Sung, Y. E.; Char, K.; Pyun, J. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013, 5, 518.CrossRefGoogle Scholar
  22. 22.
    Sun, Z.; Huang, H.; Li, L.; Liu, L.; Chen, Y. Polythioamides of high refractive index by direct polymerization of aliphatic primary diamines in the presence of elemental sulfur. Macromolecules 2017, 50, 8505–8511.CrossRefGoogle Scholar
  23. 23.
    Tian, T.; Hu, R.; Tang, B. Z. Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J. Am. Chem. Soc. 2018, 140, 6156–6163.CrossRefGoogle Scholar
  24. 24.
    Li, W.; Wu, X.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Catalyst-free, atom-economic, multicomponent polymerizations of aromatic diynes, elemental sulfur, and aliphatic diamines toward luminescent polythioamides. Macromolecules 2015, 48, 7754.Google Scholar
  25. 25.
    Luo, M.; Zhang, X. H.; Darensbourg, D. J. Poly(monothiocarbonate)s from the alternating and regioselective copolymerization of carbonyl sulfide with epoxides. Acc. Chem. Res. 2016, 49, 2209–2219.CrossRefGoogle Scholar
  26. 26.
    Rasmussen, R. A.; Khalil, M. A. K.; Dalluge, R. W.; Penkett, S. A.; Jones, B. Carbonyl sulfide and carbondisulfide from the eruptions of Mount St. Helens. Science 1982, 215, 665–667.CrossRefGoogle Scholar
  27. 27.
    Farrell, W. S.; Zavalij, P. Y.; Sita, L. R. Metal-catalyzed “ondemand” production of carbonyl sulfide from carbon monoxide and elemental sulfur. Angew. Chem. Int. Ed. 2015, 54, 4269–4273.CrossRefGoogle Scholar
  28. 28.
    Coates, G. W.; Moore, D. R. Discrete metal-based catalysts for the copolymerization CO2 and epoxides: Discovery, reactivity, optimization, and mechanism. Angew. Chem. Int. Ed. 2004, 43, 6618–6639.CrossRefGoogle Scholar
  29. 29.
    Darensbourg, D. J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev. 2007, 107, 2388–2410.CrossRefGoogle Scholar
  30. 30.
    Lu, X. B.; Ren, W. M.; Wu, G. P. CO2 copolymers from epoxides: Catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 2012, 45, 1721–1735.CrossRefGoogle Scholar
  31. 31.
    Luo, M.; Zhang, X. H.; Du, B. Y.; Wang, Q.; Fan, Z. Q. Regioselective and alternating copolymerization of carbonyl sulfide with racemic propylene oxide. Macromolecules 2013, 46, 5899–5904.CrossRefGoogle Scholar
  32. 32.
    Ren, W. M.; Liu, Y.; Xin, A. X.; Fu, S.; Lu, X. B. Single-site bifunctional catalysts for COX (X = O or S)/epoxides copolymerization: Combining high activity, selectivity, and durability. Macromolecules 2015, 48, 8445–8450.CrossRefGoogle Scholar
  33. 33.
    Gu, G. G.; Yue, T. J.; Wan, Z. Q.; Zhang, R.; Lu, X. B.; Ren, W. M. A single-site iron(III)-salan catalyst for converting COS to sulfur-containing polymers. Polymers 2017, 9, 515.CrossRefGoogle Scholar
  34. 34.
    Luo, M.; Zhang, X. H.; Darensbourg, D. J. Highly regioselective and alternating copolymerization of carbonyl sulfide with phenyl glycidyl ether. Polym. Chem. 2015, 6, 6955–6958.CrossRefGoogle Scholar
  35. 35.
    Luo, M.; Zhang, X. H.; Darensbourg, D. J. An investigation of the pathways for oxygen/sulfur scramblings during the copolymerization of carbon disulfide and oxetane. Macromolecules 2015, 48, 5526–5532.CrossRefGoogle Scholar
  36. 36.
    Luo, M.; Zhang, X. H.; Du, B. Y.; Wang, Q.; Fan, Z. Q. Well-defined high refractive index poly(monothiocarbonate) with tunable Abbe’s numbers and glass-transition temperatures via terpolymerization. Polym. Chem. 2015, 6, 4978–4983.CrossRefGoogle Scholar
  37. 37.
    Luo, M.; Zhang, X. H.; Darensbourg, D. J. An examination of the steric and electronic effects in the copolymerization of carbonyl sulfide and styrene oxide. Macromolecules 2015, 48, 6057–6062.CrossRefGoogle Scholar
  38. 38.
    Luo, M.; Zhang, X. H.; Du, B. Y.; Wang, Q.; Fan, Z. Q. Alternating copolymerization of carbonyl sulfide and cyclohexene oxide catalyzed by zinc-cobalt double metal cyanide complex. Polymer 2014, 55, 3688–3695.CrossRefGoogle Scholar
  39. 39.
    Zhang, C. J.; Yang, J. L.; Hu, L F.; Zhang, X. H. Anionic copolymerization of carbonyl sulfide with epoxides via alkali metal alkoxides. Chin. J. Chem. 2018, 36, 625–626.CrossRefGoogle Scholar
  40. 40.
    Hu, S.; Zhao, J.; Zhang, G.; Schlaad, H. Macromolecular architectures through organocatalysis. Prog. Polym. Sci. 2017, 74, 34–77.CrossRefGoogle Scholar
  41. 41.
    Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 2016, 56, 64–115.CrossRefGoogle Scholar
  42. 42.
    Pratt, R. Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 2006, 128, 4556–4557.CrossRefGoogle Scholar
  43. 43.
    MacMillan, D. W. C. The advent and development of organocatalysis. Nature 2008, 455, 304.CrossRefGoogle Scholar
  44. 44.
    Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Waymouth, R. M. Organocatalysis: Opportunities and challenges for polymer synthesis. Macromolecules 2014, 43, 2093–2107.CrossRefGoogle Scholar
  45. 45.
    Zhang, C. J.; Hu, L. F.; Wu, H. L.; Cao, X. H.; Zhang, X. H. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules 2018, 51, 8705–8711.CrossRefGoogle Scholar
  46. 46.
    Zhang, C.; Duan, H.; Hu, L.; Zhang, C.; Zhang, X. Metal-free route to precise synthesis of poly(propylene oxide) and its blocks with high activity. ChemSusChem 2018, 11, 4209–4213.CrossRefGoogle Scholar
  47. 47.
    Yang, J. L.; Wu, H. L.; Li, Y.; Zhang, X. H.; Darensbourg, D. J. Perfectly alternating and regioselective copolymerization of carbonyl sulfide and epoxides by metal-free Lewis pairs. Angew. Chem. Int. Ed. 2017, 56, 5774–5779.CrossRefGoogle Scholar
  48. 48.
    Zhang, C. J.; Wu, H. L.; Li, Y.; Yang, J. L.; Zhang, X. H. Precise synthesis of sulfur-containing polymers via cooperative dual organocatalysts with high activity. Nat. Commun. 2018, 9, 2137.CrossRefGoogle Scholar
  49. 49.
    Yue, T. J.; Ren, W. M.; Liu, Y.; Wan, Z. Q.; Lu, X. B. Crystalline polythiocarbonate from stereoregular copolymerization of carbonyl sulfide and epichlorohydrin. Macromolecules 2016, 49, 2971–2976.CrossRefGoogle Scholar
  50. 50.
    Wu, H. L.; Yang, J. L.; Luo, M.; Wang, R. Y.; Xu, J. T.; Du, B. Y.; Zhang, X. H.; Darensbourg, D. J. Poly(trimethylene monothiocarbonate) from the alternating copolymerization of COS and oxetane: A semicrystalline copolymer. Macromolecules 2016, 49, 8863–8868.CrossRefGoogle Scholar
  51. 51.
    Zhang, X. H.; Liu, F.; Sun, X. K.; Chen, S.; Du, B. Y.; Qi, G. R.; Wan, K. M. Atom-exchange coordination polymerization of carbon disulfide and propylene oxide by a highly effective double-metal cyanide complex. Macromolecules 2008, 41, 1587–1590.CrossRefGoogle Scholar
  52. 52.
    Ren, W. M.; Yue, T. J.; Li, M. R.; Wan, Z. Q.; Lu, X. B. Crystalline and elastomeric poly(monothiocarbonate)s prepared from copolymerization of COS and achiral epoxide. Macromolecules 2017, 50, 63–68.CrossRefGoogle Scholar
  53. 53.
    Cao, X. H.; Yang, J. L.; Wu, H. L.; Wang, R. Y.; Zhang, X. H.; Xu, J. T. Crystallization behavior and morphology of novel aliphatic poly(monothiocarbonate)s. Polymer 2019, 165, 112–123.CrossRefGoogle Scholar
  54. 54.
    Takahashi, Y.; Kojima, R. Crystal structure of poly(trimethylene carbonate). Macromolecules 2003, 36, 5139–5143.CrossRefGoogle Scholar
  55. 55.
    Yue, T. J.; Ren, W. M.; Chen, L.; Gu, G. G.; Liu, Y.; Lu, X. B. Synthesis of chiral sulfur-containing polymers: Asymmetric copolymerization of meso-epoxides and carbonyl sulfide. Angew. Chem. Int. Ed. 2018, 130, 12852–12856.CrossRefGoogle Scholar
  56. 56.
    Bates, C. M.; Bates, F. S. 50th Anniversary perspective: Block polymers—Pure potential. Macromolecules 2017, 50, 3–22.CrossRefGoogle Scholar
  57. 57.
    Li, Y.; Duan, H. Y.; Luo, M.; Zhang, Y. Y.; Zhang, X. H.; Darensbourg, D. J. Mechanistic study of regio-defects in the copolymerization of propylene oxide/carbonyl sulfide catalyzed by (salen)CrX Complexes. Macromolecules 2017, 50, 8426–8437.CrossRefGoogle Scholar
  58. 58.
    Yang, J. L.; Cao, X. H.; Zhang, C. J.; Wu, H. L.; Zhang, X. H. Highly efficient one-pot synthesis of COS-based block copolymers by using organic Lewis pairs. Molecules 2018, 23, 298.CrossRefGoogle Scholar
  59. 59.
    Wang, Z.; Yuan, L.; Tang, C. Sustainable elastomers from renewable biomass. Acc. Chem. Res. 2017, 50, 1762–1773.CrossRefGoogle Scholar
  60. 60.
    Hu, L. F.; Li, Y.; Liu, B.; Zhang, Y. Y.; Zhang, X. H. Alternating and regioregular copolymers with high refractive index from COS and biomass-derived epoxides. RSC Adv. 2017, 7, 49490–49497.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science & EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations