Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1205–1214 | Cite as

Readily Prepared and Tunable Ionic Organocatalysts for Ring-opening Polymerization of Lactones

  • Zhuo-Lun Jiang
  • Jun-Peng ZhaoEmail author
  • Guang-Zhao Zhang
Article

Abstract

Highly potent ionic organocatalyst is developed for room-temperature controlled ring-opening polymerization (ROP) of lactones, including δ-valerolactone, ε-caprolactone, and δ-hexalactone. The catalysts are prepared by simply mixing tetra-n-butyl ammonium hydroxide and a (thio)urea at elevated temperature under vacuum, and used in cooperation with an alcoholic initiator. The performance of the catalyst is readily adjusted and optimized through variation of the (thio)urea precursor, catalyst composition, and reaction condition. Urea-derived catalysts are generally superior to thiourea-derived ones. Provided with proper N-substituents, the catalyst affords both high polymerization efficiency and high selectivity for monomer enchainment over macromolecular transesterification, even at high monomer conversion and/or substantially extended reaction time. In addition to acidity, structural symmetry of the urea also proves decisive for the catalytic activity, which enables a catalyst-assisted proton transfer process for the ring-opening of lactone and thus provides a novel mechanistic insight for ROP catalyzed by hydrogen-bonding type bifunctional ionic organocatalysts.

Keywords

Organocatalytic polymerization Ring-opening polymerization Polyester 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21734004 and 21674038).

Supplementary material

10118_2019_2285_MOESM1_ESM.pdf (845 kb)
Readily Prepared and Tunable Ionic Organocatalysts for Ring-opening Polymerization of Lactones

References

  1. 1.
    Albertsson, A. C.; Varma, I. K. Aliphatic polyesters: Synthesis, properties and applications. Adv. Polym. Sci.2002, 157, 1–40.Google Scholar
  2. 2.
    Nair, L. S.; Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci.2007, 32, 762–798.Google Scholar
  3. 3.
    Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev.2009, 38, 3484–3504.PubMedGoogle Scholar
  4. 4.
    Lecomte, P.; Jérôme, C. Recent developments in ring-opening polymerization of lactones. Adv. Polym. Sci.2012, 255, 173–217.Google Scholar
  5. 5.
    Williams, C. K. Synthesis of functionalized biodegradable polyesters. Chem. Soc. Rev.2007, 36, 1573–1580.PubMedGoogle Scholar
  6. 6.
    Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Organocatalytic ring-opening polymerization. Chem. Rev.2007, 107, 5813–5840.PubMedGoogle Scholar
  7. 7.
    Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Waymouth, R. M. Organocatalysis: Opportunities and challenges for polymer synthesis. Macromolecules2010, 23, 2093–2107.Google Scholar
  8. 8.
    Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci.2016, 56, 64–115.Google Scholar
  9. 9.
    Hu, S.; Zhao, J.; Zhang, G.; Schlaad, H. Macromolecular architectures through organocatalysis. Prog. Polym. Sci.2017, 74, 34–77.Google Scholar
  10. 10.
    Boileau, S.; Illy, N. Activation in anionic polymerization: Why phosphazene bases are very exciting promoters. Prog. Polym. Sci.2011, 36, 1132–1151.Google Scholar
  11. 11.
    Liu, S.; Ren, C.; Zhao, N.; Shen, Y.; Li, Z. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun.2018, 1800485.Google Scholar
  12. 12.
    Fevre, M.; Pinaud, J.; Gnanou, Y.; Vignolle, J.; Taton, D. N-Heterocyclic carbenes (NHCs) as organocatalysts and structural components in metal-free polymer synthesis. Chem. Soc. Rev.2013, 42, 2142–2172.PubMedGoogle Scholar
  13. 13.
    Naumann, S.; Dove, A. P. N-heterocyclic carbenes as organocatalysts for polymerizations: Trends and frontiers. Polym. Chem.2015, 6, 3185–3200.Google Scholar
  14. 14.
    Gazeau-Bureau, S.; Delcroix, D.; Martín-Vaca, B.; Bourissou, D.; Navarro, C.; Magnet, S. Organo-catalyzed ROP of ε-caprolactone: Methanesulfonic acid competes with trifluoromethanesulfonic acid. Macromolecules2008, 21, 3782–3784.Google Scholar
  15. 15.
    Kakuchi, R.; Tsuji, Y.; Chiba, K.; Fuchise, K.; Sakai, R.; Satoh, T.; Kakuchi, T. Controlled/living ring-opening polymerization of δ-valerolactone using triflylimide as an efficient cationic organocatalyst. Macromolecules2010, 23, 7090–7094.Google Scholar
  16. 16.
    Makiguchi, K.; Satoh, T.; Kakuchi, T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules2011, 44, 1999–2005.Google Scholar
  17. 17.
    Thomas, C.; Bibal, B. Hydrogen-bonding organocatalysts for ring-opening polymerization. Green Chem.2014, 16, 1687–1699.Google Scholar
  18. 18.
    Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L. Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc.2006, 128, 4556–4557.PubMedGoogle Scholar
  19. 19.
    Zhang, X.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem.2016, 8, 1047–1053.PubMedGoogle Scholar
  20. 20.
    Lohmeijer, B. G. G.; Pratt, R. C.; Leibfarth, F.; Logan, J. W.; Long, D. A.; Dove, A. P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R. M.; Hedrick, J. L. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules2006, 39, 8574–8583.Google Scholar
  21. 21.
    Li, H.; Wang, C.; Yue, J.; Zhao, X.; Bai, F. Living ring-opening polymerization of lactides catalyzed by guanidinium acetate. J. Polym. Sci., Part A: Polym. Chem.2004, 42, 3775–3781.Google Scholar
  22. 22.
    Makiguchi, K.; Kikuchi, S.; Yanai, K.; Ogasawara, Y.; Sato, S.; Satoh, T.; Kakuchi, T. Diphenyl phosphate/4-dimethyl-aminopyridine as an efficient binary organocatalyst system for controlled/living ring-opening polymerization of L-lactide leading to diblock and end-functionalized poly(L-lactide)s. J. Polym. Sci., Part A: Polym. Chem.2014, 52, 1047–1054.Google Scholar
  23. 23.
    Wang, X.; Cui, S.; Li, Z.; Kan, S.; Zhang, Q.; Zhao, C.; Wu, H.; Liu, J.; Wu, W.; Guo, K. A base-conjugate-acid pair for living/controlled ring-opening polymerization of trimethylene carbonate through hydrogen-bonding bifunctional synergistic catalysis. Polym. Chem.2014, 5, 6051–6059.Google Scholar
  24. 24.
    Miao, Y.; Stanley, N.; Favrelle, A.; Bousquet, T.; Bria, M.; Mortreux, A.; Zinck, P. New acid/base salts as co-catalysts for the organocatalyzed ring opening polymerization of lactide. J. Polym. Sci., Part A: Polym. Chem.2015, 53, 659–664.Google Scholar
  25. 25.
    Lin, B.; Waymouth, R. M. Urea anions: Simple, fast, and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc.2017, 139, 1645–1652.PubMedGoogle Scholar
  26. 26.
    Tan, C.; Xiong, S.; Chen, C. Fast and controlled ring-opening polymerization of cyclic esters by alkoxides and cyclic amides. Macromolecules2018, 51, 2048–2053.Google Scholar
  27. 27.
    Lin, L.; Han, D.; Qin, J.; Wang, S.; Xiao, M.; Sun, L.; Meng, Y. Nonrtrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): Facile bulk polymerization using economical ureas/alkoxides. Macromolecules2018, 1, 9317–9322.Google Scholar
  28. 28.
    Xia, Y.; Chen, Y.; Song, Q.; Hu, S.; Zhao, J.; Zhang, G. Base-to-base organocatalytic approach for one-pot construction of poly(ethylene oxide)-based macromolecular structures. Macromolecules2016, 49, 6817–6825.Google Scholar
  29. 29.
    Pothupitiya, J. U.; Dharmaratne, N. U.; Jouaneh, T. M. M.; Fastnacht, K. V.; Coderre, D. N.; Kiesewetter, M. K. H-bonding organocatalysts for the living, solvent-free ring-opening polymerization of lactones: Toward an all-lactones, all-conditions approach. Macromolecules2017, 50, 8948–8954.Google Scholar
  30. 30.
    Zhang, C. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules2018, 51, 8705–8711.Google Scholar
  31. 31.
    Blain, M.; Yau, H.; Jean-Gerard, L.; Auvergne, R.; Benazet, D.; Schreiner, P. R.; Caillol, S.; Andrioletti, B. Urea- and thiourea-catalyzed aminolysis of carbonates. ChemSusChem2016, 9, 2269–2272.PubMedGoogle Scholar
  32. 32.
    Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner, P. R. (Thio)urea organocatalyst equilibrium acidities in DMSO. Org. Lett.2012, 14, 1724–1727.PubMedGoogle Scholar
  33. 33.
    Walvoord, R. R.; Huynh, P. N. H.; Kozlowski, M. C. Quantification of electrophilic activation by hydrogen-bonding organocatalysts. J. Am. Chem. Soc.2014, 136, 16055–16065.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Lin, B.; Waymouth, R. M. Organic ring-opening polymerization catalysts: Reactivity control by balancing acidity. Macromolecules2018, 51, 2932–2938.Google Scholar
  35. 35.
    Zhao, W.; Wang, Q.; Cui, Y.; He, J.; Zhang, Y. Living/controlled ring-opening (co)polymerization of lactones by Al-based catalysts with different side arms. Dalton Trans, DOI: https://doi.org/10.1039/C8DT03941K.PubMedGoogle Scholar
  36. 36.
    Wang, Q.; Zhao, W.; He, J.; Zhang, Y.; Chen, E. Y. X. Living ring-opening polymerization of lactones by N-heterocyclic olefin/Al(C6F5)3 Lewis pairs: Structures of intermediates, kinetics, and mechanism. Macromolecules2017, 50, 123–136.Google Scholar
  37. 37.
    Zhao, J.; Hadjichristidis, N. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides. Polym. Chem.2015, 6, 2659–2668.Google Scholar
  38. 38.
    Pothupitiya, J. U.; Hewawasam, R. S.; Kiesewetter, M. K. Urea and thiourea H-bond donating catalysts for ring-opening polymerization: Mechanistic insights via (non)linear free energy relationships. Macromolecules2018, 51, 3203–3211.Google Scholar
  39. 39.
    Fuchise, K.; Igarashi, M.; Sato, K.; Shimada, S. Organocatalytic controlled/living ring-opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts. Chem. Sci.2018, 9, 2879–2891.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Dove, A. P.; Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth, R. M.; Hedrick, J. L. Thiourea-based bifunctional organocatalysis: Supramolecular recognition for living polymerization. J. Am. Chem. Soc.2005, 127, 13798–13799.PubMedGoogle Scholar
  41. 41.
    Kazakov, O. I.; Datta, P. P.; Isajani, M.; Kiesewetter, E. T.; Kiesewetter, M. K. Cooperative hydrogen-bond pairing in organocatalytic ring-opening polymerization. Macromolecules2014, 47, 7463–7468.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kazakov, O. I.; Kiesewetter, M. K. Cocatalyst binding effects in organocatalytic ring-opening polymerization of L-lactide. Macromolecules2015, 48, 6121–6126.Google Scholar
  43. 43.
    Datta, P. Coupled equilibria in H-bond donating ring-opening polymerization: The effective catalyst-determined shift of a polymerization equilibrium. Eur. Polym. J.2017, 95, 671–677.Google Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhuo-Lun Jiang
    • 1
  • Jun-Peng Zhao
    • 1
    Email author
  • Guang-Zhao Zhang
    • 1
  1. 1.Faculty of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations