Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property

  • Lei Shi
  • Ruo-Yu ZhangEmail author
  • Wu-Bin Ying
  • Han Hu
  • Yu-Bin Wang
  • Ya-Qian Guo
  • Wen-Qin Wang
  • Zhao-Bin TangEmail author
  • Jin ZhuEmail author


Thermoplastic poly(ether-ester-urethane)s were synthesized from poly(L-lactide) diols (PLLA diols), polytetrahydrofuran diol (PTMG diols), 4,4′-dicyclohexylmethane diisocyanate (HMDI), and 1,4-butanediol (BDO) by a two-step reaction, and the morphology and property of the resultant TPU could be adjusted by varying the PLLA contents. The soft segment was composed of PLLA and PTMG diols. By controlling the percentage of PLLA in the soft segment, the glass transition temperature and mechanical properties of the polyurethanes could be regulated. Based on the FTIR spectrum, we found that two kinds of hydrogen bonding existed individually in soft matrix and hard domain. The hydrogen bonding in soft matrix was unstable, which could be destroyed during elongation. With in situ stretching WAXS and SAXS experiments, we found that the PLLA crystal was destroyed and the PLLA domain oriented along the stretch direction. Finally, we proposed a schematic model to illustrate the microstructures of these elastomers before and after stretch.


Poly(L-lactide) diol Polyurethane Mechanical property Hydrogen bonding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB0309300), the National Natural Science Foundation of China (No. 51773218), Youth Innovation Promotion Association of CAS (No. 2018338), and Ningbo Natural Science Foundation (No.2018A610109). We thank Shanghai Synchrotron Radiation Facility (SSRF) for supporting the SAXS and WAXD test.

Supplementary material

10118_2019_2283_MOESM1_ESM.pdf (1.8 mb)
Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property


  1. 1.
    Sheth, J. P.; Xu, J. N.; Wilkes, G. L. Solid state structure-property behavior of semicrystalline poly(ether-block-amide) PE-BAX® thermoplastic elastomers. Polymer 2003, 44, 743–756.CrossRefGoogle Scholar
  2. 2.
    Hepburn, C. Polyurethane elastomers. Springer Science & Business Media, 2012.Google Scholar
  3. 3.
    Oertel, G. Polyurethane handbook. Reinf. Plast 1986, 30, 51.Google Scholar
  4. 4.
    Harrell, L. L. Segmented Polyurethans. Properties as a function of segment size and distribution. Macromolecules 1969, 22, 607–612.CrossRefGoogle Scholar
  5. 5.
    Oguro, K.; Kun, N.; Nishimura, H.; Kobayashi, M.; Doi, T. Modified PTMG based thermoplastic polyurethane elastomers. J. Elastom. Plast. 1985, 17, 261–272.CrossRefGoogle Scholar
  6. 6.
    Fang, H.; Wang, H.; Sun, J.; Wei, H.; Ding, Y. Tailoring elastomeric properties of waterborne polyurethane by incorporation of polymethyl methacrylate with nanostructural heterogeneity. RSC Adv. 2016, 6, 13589–13599.CrossRefGoogle Scholar
  7. 7.
    Nozaki, S.; Hirai, T.; Higaki, Y.; Yoshinaga, K.; Kojio, K.; Takahara, A. Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer. Polymer 2017, 116, 423–428.CrossRefGoogle Scholar
  8. 8.
    Petrović, Z. S.; Ferguson, J. Polyurethane elastomers. Prog. Polym. Sci. 1991, 16, 695–836.CrossRefGoogle Scholar
  9. 9.
    Prisacariu, C.; Scortanu, E.; Coseri, S.; Agapie, B. Effect of soft segment polydispersity on the elasticity of polyurethane elastomers. Ind. Eng. Chem. Res. 2013, 56, 2316–2322.CrossRefGoogle Scholar
  10. 10.
    Tang, D.; Macosko, C. W.; Hillmyer, M. A. Thermoplastic polyurethane elastomers from bio-based poly(δ-decalactone) diols. Polym. Chem. 2014, 5, 3231–3237.CrossRefGoogle Scholar
  11. 11.
    Xiang, D.; Liu, L.; Liang, Y. Effect of hard segment content on structure, dielectric and mechanical properties of hydroxyl-terminated butadiene-acrylonitrile copolymer-based polyurethane elastomers. Polymer 2017, 132, 180–187.CrossRefGoogle Scholar
  12. 12.
    Lempesis, N.; in’t Veld, P. J.; Rutledge, G. C. Atomistic simulation of the structure and mechanics of a semicrystalline polyether. Macromolecules 2016, 49, 5714–5726.CrossRefGoogle Scholar
  13. 13.
    Szycher, M.; Poirier, V. L.; Dempsey, D. J. Development of an aliphatic biomedical-grade polyurethane elastomer. J. Elastom. Plast. 1983, 15, 81–95.CrossRefGoogle Scholar
  14. 14.
    Cheng, G.; Liu, X.; Xu, R. X.; Zhang, J.; Fang, S.; Jiang, Z. Effect of polyether soft segments on the properties of hmdi based transparent polyurethane elastomers. Polyurethane Industry (in Chinese) 2016, 31, 40–43.Google Scholar
  15. 15.
    Solíscorrea, R. E.; Vargascoronado, R.; Aguilarvega, M.; Cauichrodríguez, J. V.; Román, J. S.; Marcos, A. Synthesis of HMDI-based segmented polyurethanes and their use in the manufacture of elastomeric composites for cardiovascular applications. J. Biomat. Sci-Polym. E 2007, 18, 561–578.CrossRefGoogle Scholar
  16. 16.
    Li, Z.; Tan, B. H.; Lin, T.; He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22–72.CrossRefGoogle Scholar
  17. 17.
    Li, Z.; Yuan, D.; Jin, G.; Tan, B. H.; He, C. Facile layer-by-layer self-assembly toward enantiomeric poly(lactide) stereocomplex coated magnetite nanocarrier for highly tunable drug deliveries. ACS Appl. Mater. Interfaces 2016, 8, 1842–1853.CrossRefGoogle Scholar
  18. 18.
    Tan, B. H.; Muiruri, J. K.; Li, Z.; He, C. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain. Chem. Eng. 2016, 4, 5370–5391.CrossRefGoogle Scholar
  19. 19.
    Huang, J.; Lisowski, M. S.; Runt, J.; Hall, E. S.; Kean, R. T.; Buehler, N.; Lin, J. S. Crystallization and microstructure of poly(L-lactide-co-meso-lactide) copolymers. Macromolecules 1998, 31, 2593–2599.CrossRefGoogle Scholar
  20. 20.
    Lv, R.; Peng, N.; Jin, T.; Na, B.; Wang, J.; Liu, H. Stereocomplex mesophase and its phase transition in enantiomeric polylactides. Polymer 2017, 116, 324–330.CrossRefGoogle Scholar
  21. 21.
    Abayasinghe, N. K.; Perera, K. P.; Thomas, C.; Daly, A.; Suresh, S.; Burg, K.; Harrison, G. M.; Smith, D. W. Amido-modified polylactide for potential tissue engineering applications. J. Biomat. Sci. Polym. E 2004, 15, 595–606.CrossRefGoogle Scholar
  22. 22.
    Panyam, J.; Labhasetwar, V. Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nano-particles. Mol. Pharm. 2004, 1, 77–84.CrossRefGoogle Scholar
  23. 23.
    Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475–2490.CrossRefGoogle Scholar
  24. 24.
    Jung, T.; Kamm, W.; Breitenbach, A.; Kaiserling, E.; Xiao, J. X.; Kissel, T. Biodegradable nanoparticles for oral delivery of peptides: Is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 2000, 50, 147–160.CrossRefGoogle Scholar
  25. 25.
    Gu, S. Y.; Yang, M.; Yu, T.; Ren, T. B.; Ren, J. Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym. Int. 2008, 57, 982–986.CrossRefGoogle Scholar
  26. 26.
    Hoshi, M.; Ieshige, M.; Saitoh, T.; Nakagawa, T. Separation of aqueous phenol through polyurethane membranes by pervaporation. II. Influence of diisocyanate and diol compounds and crosslinker. J. Appl. Polym. Sci. 1999, 71, 439–448.CrossRefGoogle Scholar
  27. 27.
    Hiltunen, K.; Härkönen, M.; Seppälä, J. V.; Väänänen, T. Synthesis and characterization of lactic acid based telechelic pre-polymers. Macromolecules 1996, 29, 8677–8682.CrossRefGoogle Scholar
  28. 28.
    Schneider, N. S.; Matton, R. W. Thermal transition behavior of polybutadiene containing polyurethanes. Polym. Eng. Sci. 1979, 19, 1122–1128.CrossRefGoogle Scholar
  29. 29.
    Xu, M.; Macknight, W. J.; Chen, C. H. Y.; Thomas, E. L. Structure and morphology of segmented polyurethanes: 1. Influence of incompatability on hard-segment sequence length. Polymer 1983, 24, 1327–1332.CrossRefGoogle Scholar
  30. 30.
    Hesketh, T. R.; Vanbogart, J. W. C.; Cooper, S. L. Differential scanning calorimetry analysis of morphological-changes in segmented elastomers. Polym. Eng. Sci. 1980, 20, 190–197.CrossRefGoogle Scholar
  31. 31.
    Tsuji, H.; Ishida, T. Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. J. Appl. Polym. Sci. 2003, 87, 1628–1633.CrossRefGoogle Scholar
  32. 32.
    Lucas, J. C.; Failla, M. D.; Smith, F. L.; Mandelkern, L. The double yield in the tensile deformation of the polyethylenes. Polym. Eng. Sci. 1995, 35, 1117–1123.CrossRefGoogle Scholar
  33. 33.
    Popli, R.; Mandelkern, L. Influence of structural and morphological factors on the mechanical-properties of the polyethylenes. J. Polym. Sci., Part. B: Polym. Phys. 1987, 25, 441–483.CrossRefGoogle Scholar
  34. 34.
    Lendlein, A.; Kelch, S. Shape-memory polymers. Encyclopedia of Materials Science & Technology 2002, 41, 2034–2057.Google Scholar
  35. 35.
    Zhang, L.; Jiang, Y.; Xiong, Z.; Liu, X.; Na, H.; Zhang, R.; Zhu, J. Highly recoverable rosin-based shape memory polyurethanes. J. Mater. Chem. A 2013, 1, 3263–3267.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  2. 2.School of Material Science and Chemical EngineeringNingbo UniversityNingboChina

Personalised recommendations