Chinese Journal of Polymer Science

, Volume 37, Issue 10, pp 981–989 | Cite as

Synthesis and Properties of Photodegradable Poly(furan-amine)s by a Catalyst-free Multicomponent Cyclopolymerization

  • Wei-Qiang Fu
  • Gui-Nan Zhu
  • Jian-Bing ShiEmail author
  • Bin Tong
  • Zheng-Xu Cai
  • Yu-Ping DongEmail author


A series of new photodegradable poly(furan-amine)s (PFAs) were synthesized by a one-pot, catalyst-free, multicomponent cyclopolymerization between diisocyanides, dialkylacetylene dicarboxylates, and aromatic dialdehydes. All polymerizations were conducted in toluene at 100 °C for 6 h without inert gas protection and furnished polymers with a satisfactory molecular weight (Mw up to 32200) and yield. The PFA structure was confirmed by spectroscopic techniques, such as GPC, FTIR, and NMR, as well as by comparison with a model compound. The polymers exhibited good solubility in common organic solvents and thermal stability. All the PFAs had high refractive indices in the visible light region (400 nm to 800 nm). Moreover, the PFAs were substantially degraded by UV irradiation due to the presence of furan rings. The film thickness reduction rate could be over 90%.


Photodegradation Multicomponent reaction Catalyst-free polymerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21490574, 21875019, 51673024, and 51803009) and Beijing Institute of Technology Research Fund Program for Young Scholars.

Supplementary material

10118_2019_2281_MOESM1_ESM.pdf (1.2 mb)
Synthesis and Properties of Photodegradable Poly(furan-amine)s by a Catalyst-free Multicomponent Cyclopolymerization


  1. 1.
    Nayanathara, U.; Kottegoda, N.; Perera, I. C.; Mudiyanselage, T. K. Synthesis, photodegradable and antibacterial properties of polystyrene-cinnamaldehyde copolymer film. Polym. Degrad. Stab. 2018, 155, 195–207.CrossRefGoogle Scholar
  2. 2.
    Pan, G. Y.; Jia, H. R.; Zhu, Y. X.; Wu, F. G. Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy. Nanoscale 2018, 10, 2115–2127.CrossRefGoogle Scholar
  3. 3.
    Fairbanks, B. D.; Singh, S. P.; Bowman, C. N.; Anseth, K. S. Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 2011, 44, 2444–2450.CrossRefGoogle Scholar
  4. 4.
    Cao, Z.; Li, Q.; Wang, G. Photodegradable polymer nanocapsules fabricated from dimethyldiethoxysilane emulsion templates for controlled release. Polym. Chem. 0017, 8, 6817–6823.CrossRefGoogle Scholar
  5. 5.
    Käpyla, E.; Delgado, S. M.; Kasko, A. M. Shape-changing photodegradable hydrogels for dynamic 3D cell culture. ACS Appl. Mater. Interfaces 2016, 8, 17885–17893.CrossRefGoogle Scholar
  6. 6.
    McKinnon, D. D.; Brown, T. E.; Kyburz, K. A.; Kiyotake, E.; Anseth, K. S. Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. Biomaeromoleeules 2014, 15, 2808–2816.CrossRefGoogle Scholar
  7. 7.
    Manouras, T.; Vamvakaki, M. Field responsive materials: Photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym. Chem. 2017, 8, 74–96.CrossRefGoogle Scholar
  8. 8.
    Yang, F. C.; Wang, J.; Chen, L.; Wang, X.; Chen, X. Y.; Zhang, X. Soluble and degradable polyimides with phenyl-2-pyridyl ether structure: Synthesis and characterization. Chinese J. Polym. Sci. 2015, 33, 481–489.CrossRefGoogle Scholar
  9. 9.
    Liu, Y.; Yuan, J.; Zou, Y.; Li, Y. Research progress of the furan-containing fused ring conjugated organic molecules and polymers. Acta Chim. Sin. 2017, 75, 257–270.CrossRefGoogle Scholar
  10. 10.
    Hu, Y.; Han, T.; Yan, N.; Liu, J.; Liu, X.; Wang, W. X.; Lam, J. W. Y.; Tang B. Z. Visualization of biogenic amines and in vivo ratiometric mapping of intestinal pH by AIE-active polyheterocycles synthesized by metal-free multicomponent polymerizations. Adv. Funct. Mater. 2019, 1902240.Google Scholar
  11. 11.
    Wang, F.; Gu, H.; Swager, T. M. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc. 2008, 130, 5392–5393.CrossRefGoogle Scholar
  12. 12.
    Afzal, A.; Abuilaiwi, F. A.; Habib, A.; Awais, M.; Waje, S. B.; Atieh, M. A. Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges. J. Power Sources 2017, 352, 174–186.CrossRefGoogle Scholar
  13. 13.
    Tibaoui, T.; Zaidi, B.; Bouachrine, M.; Paris, M.; Alimi, K. A study of polymers obtained by oxidative coupling of furan monomers. Synth. Met. 2011, 161, 2220–2225.CrossRefGoogle Scholar
  14. 14.
    Yeh, I. C.; Rinderspacher, B. C.; Andzelm, J. W.; Cureton, L. T.; La Scala, J. Computational study of thermal and mechanical properties of nylons and bio-based furan polyamides. Polymer 2014, 55, 166–174.CrossRefGoogle Scholar
  15. 15.
    Streifel, B. C.; Martínez Hardigree, J. F.; Katz, H. E.; Tovar, J. D. Heteroaromatic variation in amorphous 1,6-methano[10]annulene-based charge-transporting organic semiconductors. J. Mater. Chem. C 2014, 2, 7851–7858.CrossRefGoogle Scholar
  16. 16.
    Sousa, A. F.; Vilela, C.; Fonseca, A. C.; Matos, M.; Freire, C. S. R.; Gruter, G. J. M.; Coelho, J. F. J.; Silvestre, A. J. D. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: A tribute to furan excellency. Polym. Chem. 2015, 6, 5961–5983.CrossRefGoogle Scholar
  17. 17.
    Kaur, S.; Findlay, N. J.; Coomer, F. C.; Berridge, R.; Skabara, P. J. Poly([l,4]dimiino[2,3-c]furan): The synthesis, electrochemistry, and optoelectronic properties of a furan-containing polymer. Macromol. Rapid Commun. 2013, 34, 1330–1334.CrossRefGoogle Scholar
  18. 18.
    Song, B.; Hu, K.; Qin, A.; Tang, B. Z. Oxygen as a crucial co-monomer in alkyne-based polymerization toward functional poly(tetrasubstituted furan)s. Macromolecules 2018, 51, 7013–7018.CrossRefGoogle Scholar
  19. 19.
    Deng, H.; Hu, R. Zhao, E.; Chan, C. Y. K.; Lam, J. W. Y.; Tang, B. Z. One-pot three-component tandem polymerization toward functional poly(arylene thiophenylene) with aggregation-enhanced emission characteristics. Macromolecules 2014, 47, 4920–4929.CrossRefGoogle Scholar
  20. 20.
    Huang, Y.; Chen, P.; Wei, B.; Hu, R.; Tang, B. Z. Aggregation-induced emission-active hyperbranched poly(tetrahydropyrimidine)s synthesized from multicomponent tandem polymerization. Chinese J. Polym. Sci. 2019, 37, 428–436.CrossRefGoogle Scholar
  21. 21.
    Hu, R.; Li, W.; Tang, B. Z. Recent advances in alkyne-based multicomponent polymerizations. Macromol. Chem. Phys. 2016, 217, 213–224.CrossRefGoogle Scholar
  22. 22.
    Kayser, L. V.; Vollmer, M.; Welnhofer, M.; Krikcziokat, H.; Meerholz, K.; Arndtsen, B, A. Metal-free, multicomponent synthesis of pyrrole-based π-conjugated polymers from imines, acid chlorides, and alkynes. J. Am. Chem. Soc. 2016, 138, 10516–10521.CrossRefGoogle Scholar
  23. 23.
    Fu, W.; Dong, L.; Shi, J.; Tong, B.; Cai, Z.; Zhi, J.; Dong, Y. Synthesis of polyquinolines via one-pot polymerization of alkyne, aldehyde, and aniline under metal-free catalysis and their properties. Macromolecules 2018, 51, 3254–3263.CrossRefGoogle Scholar
  24. 24.
    Liu, Y.; Qin, A.; Tang, B. Z. Polymerizations based on triple-bond building blocks. Prog. Polym. Sci. 2018, 78, 92–138.CrossRefGoogle Scholar
  25. 25.
    Fu, W.; Dong, L.; Shi, J.; Tong, B.; Cai, Z.; Zhi J.; Dong, Y. Multicomponent spiropolymerization of diisocyanides, alkynes and carbon dioxide for constructing 1,6-dioxospiro[4,4]nonane-3,8-diene as structural units under one-pot catalyst-free conditions. Polym. Chem. 2018, 9, 5543–5550.CrossRefGoogle Scholar
  26. 26.
    Deng, X. X.; Li, L.; Li, Z. L.; Lv, A.; Du, F. S.; Li, Z. C. Sequence regulated poly(ester-amide)s based on passerini reaction. ACS Macro Lett. 2012, 1, 1300–1303.CrossRefGoogle Scholar
  27. 27.
    Fu, W.; Kong, L.; Shi, J.; Tong, B.; Cai, Z.; Zhi J.; Dong, Y. Synthesis of poly(amine-furan-arylene)s through a one-pot catalyst-free in situ cyclopolymerization of diisocyanide, dialkylacetylene dicarboxylates and dialdehyde. Macromolecules 2019, 52, 729–737.CrossRefGoogle Scholar
  28. 28.
    Mao, L.; Sakurai, H.; Hirao, T. Facile synthesis of 2,3-disubstituted quinoxalines by Suzuki-Miyaura coupling. Synthesis 2004, 15, 2535–2539.Google Scholar
  29. 29.
    Sandmann, B.; Happ, B.; Vitz, J.; Paulus, R. M.; Hager, M. D.; Burtscher, P.; Moszner, N.; Schubert, U. S. Metal-free cycloaddition of internal alkynes and multifunctional azides under solvent-free conditions. Macromol. Chem. Phys. 2014, 215, 1603–1608.CrossRefGoogle Scholar
  30. 30.
    Song, B.; He, B.; Qin, A.; Tang, B. Z. Direct polymerization of carbon dioxide, diynes, and alkyl dihalides under mild reaction conditions. Macromolecules 2018, 51, 42–48.CrossRefGoogle Scholar
  31. 31.
    Wei, B.; Li, W.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Metalfree multicomponent tandem polymerizations of alkynes, amines, and formaldehyde toward structure- and sequence-controlled luminescent polyheterocycles. J. Am. Chem. Soc. 2017, 139, 5075–5084.CrossRefGoogle Scholar
  32. 32.
    Alizadeh, A.; Rostamnia, S.; Zhu, L. G. Competition of the R3P/DAAD and RNC/DAAD zwitterions in their production and reaction with aromatic carboxylic acids: A novel binucleophilic system for three-component synthesis of 2-aminofurans. Synthesis 2008, 2008, 1788–1792.CrossRefGoogle Scholar
  33. 33.
    Urdl, K.; Weiss, S.; Karpa, A.; Perić, M.; Zikulnig-Rusch, E.; Brecht, M.; Kandelbauer, A.; Müller, U.; Kern, W. Furan-functionalised melamine-formaldehyde particles performing Diels-Alder reactions. Eur. Polym. J. 2018, 108, 225–234.CrossRefGoogle Scholar
  34. 34.
    Suzuki, Y. Synthesis and characterization of high refractive index and high Abbe’s number poly(thioether sulfone)s based on tricyclo[,6]decane moiety. Mcroomolcuuls, 2012, 45, 3402–3408.CrossRefGoogle Scholar
  35. 35.
    Cai, Z.; Zhang, Y.; Song, Y.; Cheng, Q.; Zheng, Y.; Cui, Z.; Shi, Z.; Chen, C.; Zhang, D. Optically transparent fluorine-containing polycarbonates with high refractive indices for thermooptic switches. Mater. Chem. Front. 2017, 1, 2031–2038.CrossRefGoogle Scholar
  36. 36.
    Faurie, A.; Mallet, C.; Allain, M.; Skene, W. G.; Frère, P. Topological and packing mode modification for solid-state emission enhancement of bis(perfluorostyryl)furan derivatives. New J. Chem. 2016, 40, 6728–6734.CrossRefGoogle Scholar
  37. 37.
    Qiu, Z.; Liu, X.; Lam, J. W. Y.; Tang, B. Z. The marriage of aggregation-induced emission with polymer science. Macromol. Rapid Commun. 2019, 40, 1800568.CrossRefGoogle Scholar
  38. 38.
    Hu, R.; Xin, D. H.; Qin, A. J.; Tang, B. Z. Polymers with aggregation-induced emission characteristics. Acta Polymerica Sinica (in Chinese) 2018, 132–144.Google Scholar
  39. 39.
    Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Ogganic photoresponse materials and devices. Chem. Soc. Rev. 2012, 41, 1754–1808.CrossRefGoogle Scholar
  40. 40.
    Yildirim, Y. Influence of γ-ray irradiation on the thermal stability and conductivity of polyfuran. Asian J. Chem. 2013, 25, 7582–7586.CrossRefGoogle Scholar
  41. 41.
    Christensen, E.; Fioroni, G. M.; Kim, S.; Fouts, L.; Gjersing, E.; Paton, R. S.; McCormick, R. L. Experimental and theoretical study of oxidative stability of alkylated furans used as gasoline blend components. Fuel 2018, 212, 576–585.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations