Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1248–1256 | Cite as

Preparation and Characterization of Multi-layer Poly(arylene sulfide sulfone) Nanofibers Membranes for Liquid Filtration

  • Zhen-Yan Liu
  • Zhi-Mei Wei
  • Xiao-Jun WangEmail author
  • Gang Zhang
  • Sheng-Ru Long
  • Jie YangEmail author
Article

Abstract

Owing to the excellent filtration performance and low energy cost, polymeric nanofibers microfiltration (MF) membranes have attracted increasing attentions. Poly(arylene sulfide sulfone) (PASS), as one of the structurally modified polymers based on poly-(phenylene sulfide) (PPS), has been selected as the raw material to fabricate nanofibers MF membranes via electrospun techniques. The effects of PASS solution and the electrospinning processing parameters on the structural morphology of nanofibers were investigated in detail. The average diameter of PASS nanofibers was (296 ± 46) nm under the optimal condition: polymer concentration of 0.27 g·mL−1 PASS/DMI, applied voltage of 20 kV, and speed of collector drum of 300 r·min−1. And then the multi-layer PASS nanofibers MF membranes were fabricated from cold-pressing the optimized PASS nanofibers (as-prepared PASS nanofibers) membrane. The morphology, porosity, pore size, mechanical properties, and surface wettability of the multi-layer PASS nanofibers MF membranes could be tuned by the layers of as-prepared nanofibers membrane. The results demonstrated that the membrane with 6 layers (marked as PASS-6) exhibited the smallest porosity, smallest pore size, highest mechanical property, and best surface wettability. Meanwhile, the multi-layer PASS nanofibers MF membranes showed that the rejection ratio gradually increased, while the pure water flux decreased with increasing membranes thickness. The PASS-6 membrane exhibited large water flux of 747.76 L·m−2·h−1 and high separation efficiency of 99.9% to 0.2 µm particles, making it a promising candidate for microfilter.

Keywords

Poly(arylene sulfide sulfone) Electrospinning Nanofibers membranes Microfiltration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2019_2280_MOESM1_ESM.pdf (1.2 mb)
Preparation and Characterization of Multi-layer Poly(arylene sulfide sulfone) Nanofibers Membranes for Liquid Filtration

References

  1. 1.
    Phomdum, P.; Gassara, S.; Deratani, A.; Chinpa, W. Enhancement of resistance to protein fouling of poly(ether imide) membrane by surface grafting with PEG under organic solvent-free condition. Chinese J. Polym. Sci.2018, 36, 1157–1167.Google Scholar
  2. 2.
    Arefi-Oskoui, S.; Khataee, A.; Vatanpour, V. Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes. Sep. Purif. Technol.2017, 184, 97–118.Google Scholar
  3. 3.
    Chen, X. R.; Su, Y.; Shen, F.; Wan, Y. H. Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers: Effect of copolymer composition and PEG chain length. J. Membr. Sci.2011, 384, 44–51.Google Scholar
  4. 4.
    Ding, H. Y.; Zhang, Q.; Wang, F. M.; Tian, Y.; Wang, L. H.; Shi, Y. Q.; Liu, B. Q. Structure control of polyphenylene sulfide membrane prepared by thermally induced phase separation. J. Appl. Polym. Sci.2007, 105, 3280–3286.Google Scholar
  5. 5.
    Meng, X. L.; Yu, G. H.; Ma, J. Preparation and properties of poly(aryl ether sulfone ketone) ultrafiltration membrane containing fluorene group for high temperature condensed water treatment. Chinese J. Polym. Sci.2018, 36, 970–978.Google Scholar
  6. 6.
    Wu, J. J.; Zhou, J.; Rong, J. Q.; Lu, Y.; Dong, H.; Yu, H. Y.; Gu, J. S. Grafting branch length and density dependent performance of zwitterionic polymer decorated polypropylene membrane. Chinese J. Polym. Sci.2018, 36, 528–535.Google Scholar
  7. 7.
    Lee, K. P.; Arnot, T. C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci.2011, 370, 1–22.Google Scholar
  8. 8.
    Homaeigohar, S. S.; Buhr, K.; Ebert, K. Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J. Membr. Sci.2010, 365, 68–77.Google Scholar
  9. 9.
    Liu, Y.; Wang, R.; Ma, H.; Hsiao, B. S.; Chu, B. High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes. Polymer2013, 54, 548–556.Google Scholar
  10. 10.
    Pi, J. K.; Yang, H. C.; Wan, L. S.; Wu, J.; Xu, Z. K. Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. J. Membr. Sci.2016, 500, 8–15.Google Scholar
  11. 11.
    Zhang, G.; Yuan, S. S.; Li, Z. M.; Long, S. R.; Yang, J. Poly(arylene ether sulfone) containing thioether units: Synthesis, oxidation and properties. RSC Adv.2014, 4, 23191–23201.Google Scholar
  12. 12.
    Li, D. S.; Long, S. R.; Zhang, G.; Yang, J. Preparation of the poly(arylene sulfide sulfone)/multi-walled carbon nanotubes composites via in situ polymerization. J. Nanosci. Nanotechnol.2013, 13, 3920–3927.PubMedGoogle Scholar
  13. 13.
    Yang, J.; Wang, H. D.; Xu, S. X.; Li, G. X.; Huang, Y. J. Study on polymerization conditions and structure of poly(phenylene sulfide sulfone). J. Polym. Res.2005, 12, 317–323.Google Scholar
  14. 14.
    Zhang, G.; Ren, H. H.; Li, D. S.; Long, S. R.; Yang, J. Synthesis of highly refractive and transparent poly(arylene sulfide sulfone) based on 4,6-dichloropyrimidine and 3,6-di-chloropyridazine. Polymer2013, 54, 601–606.Google Scholar
  15. 15.
    Liu, L.; Wang, X. J.; Wang, Y. Y; Li, L.; Pan, K.; Yang, J.; Cao, B. Preparation and characterization of asymmetric polyarylene sulfide sulfone (PASS) solvent-resistant nanofiltration membranes. Mater. Lett.2014, 132, 11–14.Google Scholar
  16. 16.
    Yuan, S. S.; Wang, J.; Li, X.; Zhu, J. Y.; Volodine, A.; Wang, X. J.; Yang, J.; Van Puyvelde, P.; van der Bruggen, B. New promising polymer for organic solvent nanofiltration: Oxidized poly(arylene sulfide sulfone). J. Membr. Sci.2018, 549, 438–445.Google Scholar
  17. 17.
    Yuan, S. S.; Zhu, J. Y.; Li, J.; Volodine, A.; Yang, J.; van Puyvelde, P.; van der Bruggen, B. Nano/microstructure decorated thin film composite poly(arylene sulfide sulfone) membrane constructed by induced fouling in organic solvent ultrafiltration. Chem. Eng. J.2018, 348, 180–190.Google Scholar
  18. 18.
    Wang, Z.; Crandall, C.; Sahadevan, R.; Menkhaus, T. J.; Fong, H. Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer2017, 114, 64–72.Google Scholar
  19. 19.
    Li, X. H.; Yang, W. M.; Li, H. Y.; Wang, Y.; Bubakir, M. M.; Ding, Y. M.; Zhang, Y. C. Water filtration properties of novel composite membranes combining solution electrospinning and needleless melt electrospinning methods. J. Appl. Polym. Sci.2015, 132, 41601.Google Scholar
  20. 20.
    Suchecka, T.; Biernacka, E.; Piatkiewicz, W. Microorganism retention on microfiltration membranes. Filtr. Separat.2003, 40, 50–55.Google Scholar
  21. 21.
    Li, M.; Wang, D.; Xiao, R.; Sun, G.; Zha, Q.; Li, H. A novel high flux poly(trimethylene terephthalate) nanofiber membrane for microfiltration media. Sep. Purif. Technol.2013, 166, 199–205.Google Scholar
  22. 22.
    Ma, H.; Burger, C.; Hsiao, B. S.; Chu, B. Ultra-fine cellulose nanofibers: New nano-scale materials for water purification. J. Mater. Chem.2011, 21, 7507–7510.Google Scholar
  23. 23.
    Gibson, P.; Schreuder-Gibson, H.; Rivin, D. Transport properties of porous membranes based on electrospun nanofibers. Colloid. Surface. A2001, 187–188, 469–481.Google Scholar
  24. 24.
    Song, T. Y.; Yao, C.; Li, X. S. Electrospinning of zein/chitosan composite fibrous membranes. Chinese J. Polym. Sci.2010, 28, 171–179.Google Scholar
  25. 25.
    Abbaasi, A.; Nasef, M. M.; Takeshi, M.; Faridi-Majidi, R. Electrospinning of nylon-6,6 solutions into nanofibers: Rheology and morphology relationships. Chinese J. Polym. Sci.2014, 32, 793–804.Google Scholar
  26. 26.
    Wu, H. Y.; Wang, R.; Field, R. W. Direct contact membrane distillation: An experimental and analytical investigation of the effect of membrane thickness upon transmembrane flux. J. Membr. Sci.2014, 470, 257–265.Google Scholar
  27. 27.
    Li, X.; Garcia-Payo, M. C.; Khayet, M.; Wang, M.; Wang, X. Superhydrophobic polysulfone/polydimethyl-siloxane electrospun nanofibrous membranes for water desalination by direct contact membrane distillation. J. Membr. Sci.2017, 542, 308–319.Google Scholar
  28. 28.
    Wang, W. C.; Pan, Y. X.; Shi, K.; Peng, C.; Ji, X. L. Hierarchical porous polymer beads prepared by polymerization-induced phase separation and emulsion-template in a microfluidic device. Chinese J. Polym. Sci.2014, 32, 1646–1654.Google Scholar
  29. 29.
    Wang, X. Y.; Xiao, C. F.; Liu, H. L.; Huang, Q. L.; Fu, H. Fabrication and properties of PVDF and PVDF-HFP microfiltration membranes. J. Appl. Polym. Sci.2018, 135, 46711.Google Scholar
  30. 30.
    Chen, L.; Cheng, H. H.; Xiong, J.; Zhu, Y. T.; Zhang, H. P.; Xiong, X.; Liu, Y. M.; Yu, J.; Guo, Z. X. Improved mechanical properties of poly(butylene succinate) membrane by co-electrospinning with gelatin. Chinese J. Polym. Sci.2018, 36, 1063–1069.Google Scholar
  31. 31.
    Xiong, Z. Y.; Kong, X. Y.; Guo, Z. X.; Yu, J. Poly(ethylene terephthalate)/carbon black composite fibers prepared by electrospinning. Chinese J. Polym. Sci.2015, 33, 1234–1244.Google Scholar
  32. 32.
    Rabiee, H.; Vatanpour, V.; Farahani, M. H. D. A.; Zarrabi, H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Sep. Purif. Technol.2015, 156, 299–310.Google Scholar
  33. 33.
    Wei, X. T.; Shi, W. L.; Li, Z. Y.; Wang, Z. G.; Wu, X. L.; Xu, J. The influences of surface roughness on the water contact angle for coated substrate with F-DLC. Key Eng. Mater.2018, 764, 68–77.Google Scholar
  34. 34.
    Gopal, R.; Kaur, S.; Feng, C. Y.; Chan, C.; Ramakrishna, S.; Tabe, S.; Matsuurac, T. Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal. J. Membr. Sci.2007, 289, 210–219.Google Scholar
  35. 35.
    Wang, R.; Liu, Y.; Li, B.; Hsiao, B. S.; Chu, B. Electrospun nanofibrous membranes for high flux microfiltration. J. Membr. Sci.2012, 392–343, 167–174.Google Scholar
  36. 36.
    Ghani, M.; Gharehaghaji, A. A.; Arami, M.; Takhtkuse, N.; Rezaei, B. Fabrication of electrospun polyamide-6/chitosan nanofibrous membrane toward anionic dyes removal. J. Nanotechnol.2014, 2014, 1.Google Scholar
  37. 37.
    Guo, J.; Zhang, Q.; Cai, Z. J.; Zhao, K. Y. Preparation and dye filtration property of electrospun polyhydroxybutyrate-calcium alginate/carbon nanotubes composite nanofibrous filtration membrane. Sep. Purif. Technol.2016, 161, 69–79.Google Scholar
  38. 38.
    Ma, H. Y.; Burger, C.; Hsiao, B. S.; Chu, B. Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules2012, 13, 180–186.PubMedGoogle Scholar
  39. 39.
    Zhou, W. Y.; Bahi, A.; Li, Y. J.; Yang, H.; Ko, F. Ultra-filtration membranes based on electrospun poly(vinylidene fluoride) (PVDF) fibrous composite membrane scaffolds. RSC Adv.2013, 3, 11614–11620.Google Scholar
  40. 40.
    Jang, W.; Yun, J.; Jeon, K.; Byun, H. PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications. RSC Adv.2015, 5, 46711–46717.Google Scholar
  41. 41.
    Shahabadi, S. M. S.; Mousavi, S. A.; Bastani, D. High flux electrospun nanofiberous membrane: Preparation by statistical approach, characterization, and microfiltration assessment. J. Taiwan Inst. Chem. Eng.2016, 59, 474–483.Google Scholar
  42. 42.
    Bae, J.; Baek, I.; Choi, H. Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem. Eng. J.2017, 307, 670–678.Google Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Polymer Science and EngineeringSichuan UniversityChengduChina
  2. 2.Analytical & Testing CenterSichuan UniversityChengduChina
  3. 3.State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduChina

Personalised recommendations