Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1298–1304 | Cite as

Mechanical Properties of Interlocked-ring Polymers: A Molecular Dynamics Simulation Study

  • Zheng-Tao Wu
  • Jia-Jia ZhouEmail author
Article
  • 25 Downloads

Abstract

Interlocked-ring polymers, also known as polycatenanes, possess an interesting molecular architecture. These polymers are composed of many interlocked rings in a linear chain. The topological constrain between neighboring rings distinguishes the interlocked-ring polymer from its linear counterpart. Here we present extensive molecular dynamic simulations on the interlocked-ring polymers and analyze the static properties of the polymer. By applying external forces to the polymer, we also study the force-extension curves of the polymer, which provides rich information about the mechanical properties of the interlockedring polymers.

Keywords

Polycatenanes Molecular dynamics simulation Force-extension Entanglement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National students’ project for innovation and entrepreneurship training program (No. 201910345046).

References

  1. 1.
    de Gennes, P. G. in Scaling concepts in polymer physics. Cornell University Press, Ithaca, 1979.Google Scholar
  2. 2.
    Doi, M.; Edwards, S. F. in The theory of polymer dynamics. Clarendon Press, Oxford, 1994.Google Scholar
  3. 3.
    Lang, M.; Fischer, J.; Sommer, J. U. Effect of topology on the conformations of ring polymers. Mcroomolcuuls, 2012, 45, 7642–7648.CrossRefGoogle Scholar
  4. 4.
    Lang, M.; Fischer, J.; Werner, M.; Sommer, J. U. Swelling of Olympic gels. Phys. Rev. Lett.2014, 112.Google Scholar
  5. 5.
    Fischer, J.; Lang, M.; Sommer, J. U. The formation and structure of Olympic gels. J. Chem. Phys.2015, 143, 243114.CrossRefGoogle Scholar
  6. 6.
    Arunachalam, M.; Gibson, H. W. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci.2014, 39, 1043–1073.CrossRefGoogle Scholar
  7. 7.
    Noda, Y.; Hayashi, Y.; Ito, K. From topological gels to slide-ring materials. J. Appl. Polym. Sci.2014, 131, 40509.CrossRefGoogle Scholar
  8. 8.
    Niu, Z. B.; Gibson, H. W. Polycatenanes. Chem. Rev.2009, 109, 6024–6046.CrossRefGoogle Scholar
  9. 9.
    Pakula, T.; Jeszka, K. Simulation of single complex macromolecules. 1. Structure and dynamics of catenanes. Macromolecules1999, 32, 6821–6830.CrossRefGoogle Scholar
  10. 10.
    Wu, Q.; Rauscher, P. M.; Lang, X. L.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Poly[n]catenanes: Synthesis of molecular interlocked chains. Science2017, 358, 1434–1439.CrossRefGoogle Scholar
  11. 11.
    Rauscher, P. M.; Rowan, S. J.; de Pablo, J. J. Topological effects in isolated poly[n]catenanes: Molecular dynamics simulations and rouse mode analysis. ACS Macro Lett.2018, 7, 938–943.CrossRefGoogle Scholar
  12. 12.
    Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys.1990, 92, 5057.CrossRefGoogle Scholar
  13. 13.
    Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys.1971, 54, 5237.CrossRefGoogle Scholar
  14. 14.
    Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys.1982, 76, 637.CrossRefGoogle Scholar
  15. 15.
    Allen, M. P.; Tildesley, D. J. in Computer simulation of liquids, 2nd ed., Clarendon Press, Oxford, 2017.CrossRefGoogle Scholar
  16. 16.
    Frenkel, D.; Smit, B. in Understanding molecular simulation, 2nd ed., Academic Press, 2002.Google Scholar
  17. 17.
    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.1995, 117, 1–19.CrossRefGoogle Scholar
  18. 18.
    Rubinstein, M.; Colby, R. H. in Polymer physics, Oxford University Press, Oxford, 2003.Google Scholar
  19. 19.
    Odijk, T. Stiff chains and filaments under tension. Macromolecules1995, 28, 7016–7018.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of EngineeringZhejiang Normal UniversityJinhuaChina
  2. 2.School of ChemistryBeihang UniversityBeijingChina

Personalised recommendations