Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 12, pp 1273–1282 | Cite as

Studies on Rheological, Thermal, and Mechanical Properties of Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly(propylene carbonate) Polyurethane Ternary Blends

  • Ji-Li Zhao
  • Hong-Wei Pan
  • Hui-Li Yang
  • Jun-Jia Bian
  • Hui-Liang ZhangEmail author
  • Ge GaoEmail author
  • Li-Song Dong
Article
  • 18 Downloads

Abstract

Polylactide (PLA), methyl methacrylate-butadiene-styrene copolymer (MBS), and poly(propylene carbonate) polyurethane (PPCU) were blended and subjected to blown film process. The rheological, mechanical, morphological, thermal, and crystalline properties of the PLA/MBS/PPCU ternary blends and the mechanical properties of the resulting films were studied. Results of mechanical test showed that PPCU and MBS could synergistically toughen PLA. The impact strength of 50/10/40 PLA/MBS/PPCU blend (74.7 kJ/m2) was about 7.5 times higher than that of the neat PLA (10.8 kJ/m2), and the elongation at break of 50/10/40 PLA/MBS/PPCU blend (276.5%) was higher by about 45 times that of PLA (6.2%). The tear strength of PLA/MBS/PPCU films was 20 kN/m higher than that of PLA, and the elongation at break (MD/TD) of 50/10/40 PLA/MBS/PPCU films was 271.1%/222.3%, whereas that of PLA was only 2.7%/3.0%. POM observations displayed that the density of spherulite nucleation increased and the size of crystalline particles decreased with the addition of MBS. With increasing PPCU content from 5% to 20%, the density of spherulite nucleation increased and the size of crystalline particles decreased continuously, but the nucleation density of spherulites was slightly lowered with increasing PPCU content from 30% to 40%. The PLA/MBS/PPCU films exhibited excellent mechanical properties, which expanded the application range of these biodegradable films.

Keywords

Biodegradable Polylactide Poly(propylene carbonate) polyurethane Methyl methacrylate-butadiene-styrene copolymer Films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Science Foundation of Zhejiang Province of China (No. LQY19B040001), the fund of Science and Technology Bureau of Jilin Province of China (No. 20170204012SF), the Program of Changchun Science and Technology Bureau (No. 16CX23), and National Key Research and Development Program of China (No. 2016YFC0501402-5).

References

  1. 1.
    Wang, H.; Qiu, Z. Crystallization behaviors of biodegradable poly(L-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim. Acta2011, 526, 229–236.CrossRefGoogle Scholar
  2. 2.
    Pan, P.; Zhu, B.; Kai, W.; Dong, T.; Inoue, Y. Polymorphic transition in disordered poly(L-lactic acid) crystals induced by annealing at elevated temperatures. Macromolecules2008, 41, 4296–4304.CrossRefGoogle Scholar
  3. 3.
    Martin, L.; Avérous, L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer2001, 42, 6209–6219.CrossRefGoogle Scholar
  4. 4.
    Rahul, M.; Amol, V.; Douglas, E. Poly(lactic acid) modifications. Prog. Polym. Sci.2010, 35, 338–356.CrossRefGoogle Scholar
  5. 5.
    Pillin, I.; Montrelay, N.; Grohens, Y. Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer2006, 47, 4676–4682.CrossRefGoogle Scholar
  6. 6.
    Harada, M.; Ohya, T.; Iida, K.; Hayashi, H.; Hirano, K.; Fukuda, H. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci.2007, 106, 1813–1820.CrossRefGoogle Scholar
  7. 7.
    Oyama, H. T. Super-tough poly(lactic acid) materials: Reactive blending with ethylene copolymer. Polymer2009, 50, 747–751.CrossRefGoogle Scholar
  8. 8.
    Zhao, Y.; Zhang, Y.; Li, Z. L.; Pan, H. W.; Dong, Q. L.; Han, L. J.; Zhang, H. L.; Dong, L. S. Rheology, mechanical properties and crystallization behavior of glycidyl methacrylate grafted poly(ethylene octene) toughened poly(lactic acid) blends. Korean J. Chem. Eng.2016, 33, 1104–1114.CrossRefGoogle Scholar
  9. 9.
    Song, W. J.; Liu, H. Z.; Chen, F.; Zhang, J. W. Effects of ionomer characteristics on reactions and properties of poly(lactic acid) ternary blends prepared by reactive blending. Polymer2012, 53, 2476–2484.CrossRefGoogle Scholar
  10. 10.
    Sun, S. L.; Zhang, M. Y.; Zhang, H. X.; Zhang, X. M. Polylactide toughening with epoxy-functionalized grafted acrylonitrile-butadiene-styrene particles. J. Appl. Polym. Sci.2011, 122, 2992–2999.CrossRefGoogle Scholar
  11. 11.
    Meng, B.; Deng, J.; Liu, Q.; Wu, Z.; Yang, W. Transparent and ductile poly(lactic acid)/poly(butyl acrlate) (PBA) blends: Structure and properties. Eur. Polym. J.2012, 48, 127–135.CrossRefGoogle Scholar
  12. 12.
    Lee, S.; Lee, J. W. Characterization and processing of biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate). Korea-Aust. Rheol. J.2005, 2, 71–77.Google Scholar
  13. 13.
    Yang, J.; Pan, H. W.; Li, X.; Sun, S. L.; Zhang, H. L.; Dong, L. S. Study on mechanical, thermal properties and crystallization behavior of poly(lactic acid)/thermoplastic poly(propylene carbonate) polyurethane blends. RSC Adv.2017, 7, 46183–46194.CrossRefGoogle Scholar
  14. 14.
    Liang, H. Y.; Hao, Y. P.; Liu, S. R.; Zhang, H. L.; Li, Y. S.; Dong, L. S.; Zhang, H. X. Thermal, rheological, and mechanical properties of polylactide/poly(diethylene glycl adipate). Polym. Bull.2013, 70, 3487–3500.CrossRefGoogle Scholar
  15. 15.
    Hao, Y. P.; Yang, H. L., Zhang, G. B.; Bai, Y. G.; Gao, G.; Dong, L. S. Diethylene glycol monobutyl ether adipate as a novel plasticizer for biodegradable polylactide. Polym. Bull.2016, 73, 3143–3161.CrossRefGoogle Scholar
  16. 16.
    Liang, H. Y.; Hao, Y. P.; Bian, J. J.; Zhang, H. L.; Dong, L. S.; Zhang, H. X. Assessment of miscibility, crystallization behaviors, and toughening mechanism of polylactide/acrylate copolymer blends. Polym. Eng. Sci.2015, 2, 386–396.CrossRefGoogle Scholar
  17. 17.
    Zhang, H. L.; Liang, H. Y.; Bian, J. J.; Hao, Y. P.; Han, L. J.; Wang, X. M.; Zhang, G. B.; Liu, S. R.; Dong, L. S. Influence of acrylic impact modifier on plasticized polylactide blown films. Polym. Int.2014, 63, 1076–1084.CrossRefGoogle Scholar
  18. 18.
    Lin, S. W.; Cheng, Y. Y. Miscibility and thermal and mechanical properties of melt-mixed poly(lactic acid)/poly(trimethylene terephthlalte/(methyl methacrylate)-butadiene-styrene co-polymer blends. J. Vinyl. Addit. Techn.2011, 1, 70–76.CrossRefGoogle Scholar
  19. 19.
    Zhang, H. L.; Liu, N. N.; Ran, X. H.; Han, C. Y.; Han, L. J.; Zhuang, Y. G.; Dong, L. S. Toughening of polylactide by melt blending with methyl methacrylate-butadiend-styrene copolymer. J. Appl. Polym. Sci.2012, 125, E550–E561.CrossRefGoogle Scholar
  20. 20.
    Chen, Y. Y.; Liu, Z. X.; Han, S.; Han, J.; Jiang, D. Y. Poly(propylene carbonate) polyurethane self-polishing coating for marine antifouling application. J. Appl. Polym. Sci.2016, 133, 43667.Google Scholar
  21. 21.
    Ma, X. F.; Yu, J. G.; Wang, N. Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J. Polym. Sci., Part B: Polym. Phys.2006, 44, 94–101.CrossRefGoogle Scholar
  22. 22.
    Wu, D. F.; Zhang, Y. S.; Zhang, M.; Yu, M. Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/olylactide blend. Biomacromolecules2009, 10, 417–424.CrossRefGoogle Scholar
  23. 23.
    Wang, X. M.; Zhuang, Y. G.; Dong, L. S. Study of carbon black-filled poly(butylene succinate)/polylactide blend. J. Appl. Polym. Sci.2012, 126, 1876–1884.CrossRefGoogle Scholar
  24. 24.
    Finkenstadt, V. L.; Liu, C. K.; Cooke, P. H.; Liu, L. S.; Willett, J. L. Mechanical property characterization of plasticized sugar beet pulp and poly(lactic acid) green composites using acoustic emission and confocal microscopy. J. Polym. Environ.2008, 16, 19–26.CrossRefGoogle Scholar
  25. 25.
    Sami, S.; Yildirim, E.; Yurtsever, M.; Yurtsever, E.; Yilgor, E.; Yilgor, I.; Wilkes, G. L. Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study. Polymer2014, 55, 4563–4576.CrossRefGoogle Scholar
  26. 26.
    Marubayashi, H.; Asai, S.; Sumita, M. Complex crystal formation of poly(L-lactide) with solvent molecules. Macromolecules2012, 45, 1384–1397.CrossRefGoogle Scholar
  27. 27.
    Bucknall, C. B.; Paul, D. R. Notched impact behavior of polymer blends: Part 1: New model for particle size dependence. Polymer2009, 50, 5539–5548.CrossRefGoogle Scholar
  28. 28.
    Bucknall, C. B.; “Deformation mechanisms in rubber-toughened polymers,” in Polymer Blends, Vol. 2, Performance, Paul, D. R; Bucknall, C. B. Eds., Wiley, New York, 2000.Google Scholar
  29. 29.
    Bucknall, C. B.; Paul, D. R. Notched impact behaviour of polymer blends: Part 2: Dependence of critical particle size on rubber particle volume fraction. Polymer2013, 54, 320–329.CrossRefGoogle Scholar
  30. 30.
    Lazzeri, A.; Bucknall, C. B. Dilatational bands in rubber-toughened polymers. J. Mater. Sci.1993, 28, 6799–6808.CrossRefGoogle Scholar
  31. 31.
    Fischer, E. W.; Sterzel, H. J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid. Polym. Sci.1973, 251, 980–990.Google Scholar
  32. 32.
    Wu, T. M.; Wu, C. Y. Biodegradable poly(lactic acid)/chitosanmodified montmorillonite nanocomposites: Preparation and characterization. Polym. Degrad. Stab.2006, 91, 2198–2204.CrossRefGoogle Scholar
  33. 33.
    Bouapao, L.; Tsuji, H.; Tashiro, K.; Zhang, J. M.; Hanesaka, M. Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s. Polymer2009, 50, 4007–4017.CrossRefGoogle Scholar
  34. 34.
    Jalali, A.; Shahbikian, S.; Huneault, M. A.; Elkoun, S. Effect of molecular weight on the shear-induced crystallization of poly(lactic acid). Polymer2017, 112, 393–401.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunChina
  2. 2.Department of ScienceBeihua UniversityJilinChina
  3. 3.Key Laboratory of Polymer EcomaterialsChinese Academy of Sciences, Changchun Institute of Applied ChemistryChangchunChina
  4. 4.Zhejiang Zhongke Applied Chemistry Technology Co., Ltd.HangzhouChina

Personalised recommendations