A Well-defined Hierarchical Hydrogen Bonding Strategy to Polyureas with Simultaneously Improved Strength and Toughness

  • Ting Li
  • Tian-Ze Zheng
  • Zhao-Xia Guo
  • Jun XuEmail author
  • Bao-Hua GuoEmail author


A well-defined quadruple hydrogen bonding strategy involving dimerization of 2-ureido-4[1H]-pyrimidone (UPy) units is innovatively designed to prepare polyureas with high overall mechanical properties. Three polyureas containing different amounts of UPy units were synthesized by replacing a portion of isophorone diisocyanate (IPDI) with a UPy-derived diisocyanate. The formation of quadruple hydrogen bonds in hard segments via UPy dimers was confirmed by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties of the polyureas were evaluated by uniaxial tensile testing. Compared to the polyurea without UPy units, remarkable improvements in Young’s modulus, tensile strength, and toughness were simultaneously achieved when UPy units were incorporated. The mechanism behind the strong strengthening effect rooted in the stronger intermolecular forces among hard segments brought by the quadruple hydrogen bonds, which were stronger than the inherent bidentate and monodentate hydrogen bonds among urea groups, and the slower soft segmental dynamics reaveled by both increased Tg and relaxation time of the soft segments. The mechanism behind the strong toughening effect was ascribed to more effective energy dissipation brought by the quadruple hydrogen bonds that served as stronger sacrificial bonds upon deformation. This work may offer new insight into the design of polyurea elastomers with comprehensively improved mechanical properties.


Mechanical properties Strength Toughness Quadruple H-bonds Polyurea elasomers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51673110 and 51473085), the Joint Funds of the National Natural Science Foundation of China (No. U1862205), and Tsinghua University-Suzhou Innovation Leading Program (No. 2016SZ0315).

Supplementary material

10118_2019_2275_MOESM1_ESM.pdf (868 kb)
A Well-defined Hierarchical Hydrogen Bonding Strategy to Polyureas with Simultaneously Improved Strength and Toughness


  1. 1.
    Roland, C. M.; Twigg, J. N.; Vu, Y.; Mott, P. H. High strain rate mechanical behavior of polyurea. Polymer 2007, 48, 574–578.CrossRefGoogle Scholar
  2. 2.
    Sarva, S. Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 2007, 48, 2208–2213.CrossRefGoogle Scholar
  3. 3.
    Yi, J. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes. Polymer 2226, 47, 319–329.CrossRefGoogle Scholar
  4. 4.
    Choi, T.; Fragiadakis, D.; Roland, C. M.; Runt, J. Microstructure and segmental dynamics of polyurea under uniaxial deformation. Macromolecules 2212, 45, 3581–3589.CrossRefGoogle Scholar
  5. 5.
    Li, T.; Xie, Z.; Xu, J.; Weng, Y.; Guo, B. H. Design of a self-healing cross-linked polyurea with dynamic cross-links based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 2218, 107, 249–257.CrossRefGoogle Scholar
  6. 6.
    Rinaldi, R. G.; Boyce, M. C.; Weigand, S. J.; Londono, D. J.; Guise, M. W. Microstructure evolution during tensile loading histories of a polyurea. J. Polym. Sci., Part B: Polym. Phys. 2211, 49, 1660–1671.CrossRefGoogle Scholar
  7. 7.
    Castagna, A. M.; Pangon, A.; Dillon, G. P.; Runt, J. Effect of thermal history on the microstructure of a poly(tetramethylene oxide)-based polyurea. Macromolecules 2213, 46, 6520–6527.CrossRefGoogle Scholar
  8. 8.
    Chao, L.; Ma, C.; Xie, Q.; Zhang, G. Self-repairing silicone coating for marine anti-biofouling. J. Mater. Chem. A 2210, 5, 15855–15861.Google Scholar
  9. 9.
    Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2213, 52, 9422–9441.CrossRefGoogle Scholar
  10. 10.
    Fragiadakis, D.; Gamache, R.; Bogoslovov, R. B.; Roland, C. M. Segmental dynamics of polyurea: Effect of stoichiometry. Polymer 2212, 51, 178–184.CrossRefGoogle Scholar
  11. 11.
    Xuan, L.; Kuang, W.; Guo, B. Preparation of rubber:graphene oxide composites with in situ interfacial design. Polymer 2215, 56, 553–562.Google Scholar
  12. 12.
    Qiao, H.; Wang, R.; Yao, H.; Zhou, X.; Lei, W.; Hu, X.; Zhang, L. Preparation of graphene oxide:bio-based elastomer nanocomposites through polymer design and interface tailoring. Polym. Chem. 2215, 6, 6140–6151.CrossRefGoogle Scholar
  13. 13.
    Qian, X.; Song, L.; Yu, B.; Yang, W.; Wang, B.; Hu, Y.; Yuen, R. K. One-pot surface functionalization and reduction of graphene oxide with long-chain molecules: Preparation and its enhancement on the thermal and mechanical properties of polyurea. Chem. Eng. J. 2214, 236, 233–241.CrossRefGoogle Scholar
  14. 14.
    Qian, X.; Song, L.; Tai, Q.; Hu, Y.; Yuen, R. K. Graphite oxide:polyurea and graphene:polyurea nanocomposites: A comparative investigation on properties reinforcements and mechanism. Compos. Sci. Technol. 2213, 74, 228–234.CrossRefGoogle Scholar
  15. 15.
    Wu, C.; Zhang, M. Q.; Rong, M. Z.; Friedrich, K. Silica nanoparticles filled polypropylene: Effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos. Sci. Technol. 2225, 65, 635–645.CrossRefGoogle Scholar
  16. 16.
    Sánchez-Ferrer, A.; Rogez, D.; Martinoty, P. Synthesis and characterization of new polyurea elastomers by sol:gel chemistry. Macromol. Chem. Phys. 2212, 211, 1712–1721.CrossRefGoogle Scholar
  17. 17.
    Bras, W.; Derbyshire, G. E.; Bogg, D.; Cooke, J.; Elwell, M. J.; Komanschek, B. U.; Naylor, S.; Ryan, A. J. Simultaneous studies of reaciton-kinetics and structure development in polymer processing. Science 1995, 267, 996–999.CrossRefGoogle Scholar
  18. 18.
    Elwell, M. J.; Ryan, A. J.; Grünbauer, H. J. M.; Lieshout, H. C. V. In situ studies of structure development during the reactive processing of model flexible polyurethane foam systems using FTIR spectroscopy, synchrotron SAXS, and rheology. Macromolecules 1996, 212, 2960–2968.CrossRefGoogle Scholar
  19. 19.
    Sami, S.; Yildirim, E.; Yurtsever, M.; Yurtsever, E.; Yilgor, E.; Yilgor, I.; Wilkes, G. L. Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study. Polymer 2214, 55, 4563–4576.CrossRefGoogle Scholar
  20. 20.
    Das, S.; Cox, D. F.; Wilkes, G. L.; Klinedinst, D. B.; Yilgor, I.; Yilgor, E.; Beyer, F. L. Effect of symmetry and H-bond strength of hard segments on the structure-property relationships of segmented, nonchain extended polyurethanes and polyureas. J. Polym. Sci., Part B: Polym. Phys. 2220, 46, 853–875.Google Scholar
  21. 21.
    Das, S.; Yilgor, I.; Yilgor, E.; Wilkes, G. L. Probing the urea hard domain connectivity in segmented, non-chain extended polyureas using hydrogen-bond screening agents. Polymer 2228, 49, 174–179.CrossRefGoogle Scholar
  22. 22.
    Aneja, A.; Wilkes, G. L. Exploring macro-and microlevel connectivity of the urea phase in slabstock flexible polyurethane foam formulations using lithium chloride as a probe. Polymer 2222, 43, 5551–5561.CrossRefGoogle Scholar
  23. 23.
    Mattia, J.; Painter, P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 2007, 40, 1546–1554.CrossRefGoogle Scholar
  24. 24.
    Appel, W. P. J.; Portale, G.; Wisse, E.; Dankers, P. Y. W.; Meijer, E. W. Aggregation of ureido-pyrimidinone supra-molecular thermoplastic elastomers into nanofibers: A kinetic analysis. Macromolecules 2211, 44, 6776–6784.CrossRefGoogle Scholar
  25. 25.
    Cheng, C. C.; Yen, Y. C.; Chang, F. C. Self-supporting polymer from a POSS derivative. Macromol. Rapid Commun. 2211, 32, 927–932.CrossRefGoogle Scholar
  26. 26.
    Söntjens, S. H. M.; Renken, R. A. E.; Gemert, G. M. L. V.; Engels, T. A. P.; Bosman, A. W.; Janssen, H. M.; Govaert, L. E.; Baaijens, F. P. T. Thermoplastic elastomers based on strong and well-defined hydrogen-bonding interactions. Macromolecules 2228, 47, 5703–5708.Google Scholar
  27. 27.
    Gooch, A.; Nedolisa, C.; Houton, K. A.; Lindsay, C. I.; Saiani, A.; Wilson, A. J. Tunable self-assembled elastomers using triply hydrogen-bonded arrays. Macromolecules 2212, 45, 4723–4729.CrossRefGoogle Scholar
  28. 28.
    Dankers, P. Y. W.; Zhang, Z.; Wisse, E.; Grijpma, D. W.; Sijbesma, R. P.; Feijen, J.; Meijer, E. W. Oligo(trimethylene carbonate)-based supramolecular biomaterials. Macromolecules 2226, 39, 8763–8771.CrossRefGoogle Scholar
  29. 29.
    Hirschberg, J. H. K. K.; Beijer, F. H.; Aert, H. A. V.; Magusin, P. C. M. M.; Sijbesma, R. P.; Meijer, E. W. Supramolecular polymers from linear telechelic siloxanes with quadruple-hydrogen-bonded units. Macromolecules 1999, 32, 2696–2705.CrossRefGoogle Scholar
  30. 30.
    Yan, X.; Liu, Z.; Zhang, Q.; Lopez, J.; Wang, H.; Wu, H. C.; Niu, S.; Yan, H.; Wang, S.; Lei, T. Quadruple H-bonding cross-linked supramolecular polymeric materials as substrates for stretchable, anti-tearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 2218, 140, 5280–5289.CrossRefGoogle Scholar
  31. 31.
    Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Towards dynamic but super-tough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew. Chem. Int. Ed. 2218, 57, 13838–13842.CrossRefGoogle Scholar
  32. 32.
    Luo, M. C.; Jian, Z.; Xuan, F.; Huang, G.; Wu, J. Toughening diene elastomers by strong hydrogen bond interactions. Polymer 2016, 106, 21–28.CrossRefGoogle Scholar
  33. 33.
    Jie, L.; Tang, Z.; Jing, H.; Guo, B.; Huang, G. Promoted strain-induced-crystallization in synthetic cis-1,4-polyisoprene via constructing sacrificial bonds. Polymer 2016, 97, 580–588.CrossRefGoogle Scholar
  34. 34.
    Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210.CrossRefGoogle Scholar
  35. 35.
    Sontjens, S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4[1H]-pyrimidinone dimers. J. Am. Chem. Soc. 2000, 122, 7487–7493.CrossRefGoogle Scholar
  36. 36.
    Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J. Am. Chem. Soc. 1998, 120, 6761–6769.CrossRefGoogle Scholar
  37. 37.
    Wei, M.; Zhan, M.; Yu, D.; Xie, H.; He, M.; Yang, K.; Wang, Y. Novel poly(tetramethylene ether)glycol and poly(ε-caprolactone) based dynamic network via quadruple hydrogen bonding with triple-shape effect and self-healing capacity. ACS Appl. Mater. Interfaces 2015, 7, 2585–2596.CrossRefGoogle Scholar
  38. 38.
    Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.CrossRefGoogle Scholar
  39. 39.
    Teo, L. S.; Chen, C. Y.; Kuo, J. F. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethaneurea)s. Macromolecules 1997, 30, 1793–1799.CrossRefGoogle Scholar
  40. 40.
    Srichatrapimuk, V. W.; Cooper, S. L. Infrared thermal analysis of polyurethane block polymers. J. Polym. Sci., Part B: Polym. Phys. 1978, 15, 267–311.Google Scholar
  41. 41.
    Prisacariu, C. Polyurethane elastomers: from morphology to mechanical aspects. Springer Science & Business Media, 2011.CrossRefGoogle Scholar
  42. 42.
    Neal, J. A.; Mozhdehi, D.; Guan, Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc. 2015, 137, 4846–4850.CrossRefGoogle Scholar
  43. 43.
    Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977.CrossRefGoogle Scholar
  44. 44.
    Liu, X. Y.; Ming, Z.; Shi, F. K.; Hao, X.; Xie, X. M. Multibond network hydrogels with robust mechanical and self-heal-able properties. Chinese J. Polym. Sci. 2017, 35, 1253–1267.CrossRefGoogle Scholar
  45. 45.
    Luo, M. C.; Zhang, X. K.; Zeng, J.; Gao, X. X.; Huang, G. S. Enhanced relaxation behavior below glass transition temperature in diene elastomer with heterogeneous physical network. Polymer 2016, 91, 81–88.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations