Advertisement

Preparation of Three Dimensional Hydroxyapatite Nanoparticles/Poly(vinylidene fluoride) Blend Membranes with Excellent Dye Removal Efficiency and Investigation of Adsorption Mechanism

  • Jian-Hua LiEmail author
  • Hui Zheng
  • Hua-Xiang Lin
  • Bo-Xin Zhang
  • Jia-Bin Wang
  • Tong-Lei Li
  • Qi-Qing Zhang
Article
  • 4 Downloads

Abstract

In this work, poly(vinylidene fluoride) (PVDF) membranes with hydrophilicity as well as preeminent mechanical strength and dye removal efficiency were fabricated by blending with three dimensional hydroxyapatite nanoparticles (HAPNPs). Surface chemical composition and morphology of the prepared membranes were systematically investigated by ATR-FTIR, XPS, XRD, FESEM, and EDS mapping analyses. The results verified that a large number of HAPNPs were successfully embedded on the modified membrane cross-sections. Moreover, HAPNPs content in the casting solution is an important factor that could have profound influence on the structures and performances of PVDF/HAPNPs blend membranes. The optimal membrane M2 with 2 wt% HAPNPs exhibited excellent hydrophilicity, outstanding mechanical strength of 19.60 MPa, and high water flux of (2466 ± 31) Lm−2h−1. The maximum static adsorption capacity of the optimal membrane was about 10.83 mg/g, which is 3.75 times that of the pristine PVDF membrane (2.89 mg/g). PVDF/HAPNPs membranes were not only utilized for static adsorption, but also applied to dynamic dye removal. The possible adsorption mechanism between Congo red (CR) and HAPNPs embedded on the blend membranes was firstly discussed in this work. HAPNPs interacted with CR via Lewis reaction, hydrogen bond interaction, as well as electrostatic attraction to achieve the adsorption effect. Herein, the PVDF/HAPNPs blend membranes with extraordinary hydrophilicity, mechanical strength, and dye removal efficiency possess tremendous potential for practical applications of wastewater treatment.

Keywords

Three dimensional hydroxyapatite nanoparticles PVDF/HAPNPs blend membranes Mechanical strength Dynamic dye removal Adsorption mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51303028, 31771893, and 31401609) and the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University (No. SKLPEE-KF201720).

References

  1. 1.
    Zhang, P. B.; Tang, A. Q.; Wang, Z. H.; Lu, J. Y.; Zhu, B. K.; Zhu, L. P. Tough poly(L-DOPA)-containing double network hydrogel beads with high capacity of dye adsorption. Chinese J. Polym. Sci. 2018, 36, 1251–1261.CrossRefGoogle Scholar
  2. 2.
    Mahmoudian, M.; Balkanloo, P. G.; Nozad, E. A facile method for dye and heavy metal elimination by pH sensitive acid activated montmorillonite/polyethersulfone nanocomposite membrane. Chinese J. Polym. Sci. 2018, 36, 49–57.CrossRefGoogle Scholar
  3. 3.
    Li, F.; Dong, Y. C.; Kang W. M.; Cheng, B. W.; Cui, G. X. Enhanced removal of azo dye using modified PAN nanofibrous membrane Fe complexes with adsorption/visible-driven photocatalysis bifunctional roles. Appl. Surf. Sci. 2017, 404, 206–215.CrossRefGoogle Scholar
  4. 4.
    Liu, N.; Zhang Q. D.; Qu, R. X.; Zhang, W. F.; Li, H. F.; Wei, Y.; Feng, L. Nanocomposite deposited membrane for oil-in-water emulsion separation with in situ removal of anionic dyes and surfactants. Langmuir 2017, 33, 7380–7388.CrossRefGoogle Scholar
  5. 5.
    Li, B.; Dong, Y. C.; Ding, Z. Z. Heterogeneous Fenton degradation of azo dyes catalyzed by modified polyacrylonitrile fiber Fe complexes: QSPR (quantitative structure property relationship) study. J. Environ. Sci. 2013, 25, 1469–1476.CrossRefGoogle Scholar
  6. 6.
    Hamoud, H. I.; Finqueneisel, G.; Azambre, B. Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system. J. Environ. Manage. 2017, 195, 195–207.CrossRefGoogle Scholar
  7. 7.
    Wang, T. Q.; Xu, Y.; He, Z. D.; Zhou, M. H.; Huang, K. Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study. Chinese J. Polym. Sci. 2018, 36, 98–105.CrossRefGoogle Scholar
  8. 8.
    Zhan, Y. Q.; Wan, X. Y.; He, S. J.; Yang, Q. B.; He, Y. Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopamine coated graphene oxide nanofibrous composite membrane for anionic dyes separation. Chem. Eng. J. 2018, 333, 132–145.CrossRefGoogle Scholar
  9. 9.
    Ghaedi, M.; Sadeghian, B.; Pebdani, A. A.; Sahraei, R.; Daneshfar, A.; Duran, C. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem. Eng. J. 2012, 187, 133–141.CrossRefGoogle Scholar
  10. 10.
    Zhang, R. N.; Su, Y. L.; Zhao, X. T.; Li, Y. F.; Zhao, J. J.; Jiang, Z. Y. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). J. Membr. Sci. 2014, 470, 9–17.CrossRefGoogle Scholar
  11. 11.
    Dawood, S.; Sen, T. K. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 2012, 46, 1933–1946.CrossRefGoogle Scholar
  12. 12.
    Grabowska, E. L.; Gryglewicz, G. Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 2007, 74, 34–40.CrossRefGoogle Scholar
  13. 13.
    Kupiec, A. S.; Olender, E.; Malina, D.; Tyliszczak, B. Effect of calcination parameters on behavior of bone hydroxyapatite in artificial saliva and its biosafety. Mater. Chem. Phys. 2018, 206, 158–165.CrossRefGoogle Scholar
  14. 14.
    Chang, M. C.; Ko, C. C.; Douglas, W. H. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 2003, 24, 2853–2862.CrossRefGoogle Scholar
  15. 15.
    Furuichi, K.; Oaki, Y.; Imai, H. Preparation of nanotextured and nanofibrous hydroxyapatite through dicalcium phosphate with gelatin. Chem. Mater. 2006, 18, 229–234.CrossRefGoogle Scholar
  16. 16.
    Yang, L. X.; Yin, J. J.; Wang, L. L.; Xing, G. X.; Yin, P.; Liu, Q. W. Hydrothermal synthesis of hierarchical hydroxyapatite: Preparation, growth mechanism and drug release property. Ceram. Int. 2002, 38, 495–502.CrossRefGoogle Scholar
  17. 17.
    Pramanik, S.; Agarwal, A. K.; Rai, K. N.; Garg, A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 2007, 33, 419–426.CrossRefGoogle Scholar
  18. 18.
    Nirmala, R.; Nam, K. T.; Navamathavan, R.; Park, S. J.; Kim, H. Y. Hydroxyapatite mineralization on the calcium chloride blended polyurethane nanofiber via biomimetic method. Nanoscale Res. Lett. 2011, 6, 1–8.Google Scholar
  19. 19.
    Li, M.; Liu, X. M.; Xu, Z. Q.; Yeung, K. W. K.; Wu, S. L. Dopamine modified organic-inorganic hybrid coating for anti-microbial and osteogenesis. ACS Appl. Mater. Interfaces 2016, 8, 33972–33981.CrossRefGoogle Scholar
  20. 20.
    Gao, X.; Song, J. L.; Ji, P.; Zhang, X. H.; Li, X. M.; Xu, X.; Wang, M. K.; Zhang, S. Q.; Deng, Y.; Deng, F.; Wei, S. C. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 3499–3515.CrossRefGoogle Scholar
  21. 21.
    Koley, P.; Sakurai, M.; Takei, T.; Aono, M. Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: Excellent adsorption of toxic heavy metals and hazardous dye from wastewater. RSC Adv. 2016, 6, 86607–86616.CrossRefGoogle Scholar
  22. 22.
    Lee, M.; Kim, H.; Seo, J.; Kang, M.; Kang, S.; Jang, J.; Lee, Y.; Seo, J. H. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces. Appl. Surf. Sci. 2018, 427, 517–524.CrossRefGoogle Scholar
  23. 23.
    Zhang, J.; Zhang, W. P.; Bao, T.; Chen, Z. L. Mussel-inspired polydopamine-assisted hydroxyapatite as the stationary phase for capillary electrochromatography. Anytyst 2013, 139, 242–250.Google Scholar
  24. 24.
    Yu, W. L.; Sun, T. W.; Ding, Z. Y.; Qi, C.; Zhao, H. K.; Chen, F.; Shi, Z. M.; Zhu, Y. J.; Chen, D. Y.; He, Y. H. Copper-doped mesoporous hydroxyapatite microspheres synthesized by a microwave-hydrothermal method using creatine phosphate as an organic phosphorus source: Application in drug delivery and enhanced bone regeneration. J. Mater. Chem. B 2017, 5, 1039–1052.CrossRefGoogle Scholar
  25. 25.
    Zhang, Y. G.; Zhu, Y. J.; Chen, F.; Sun, T. W.; Jiang, Y. Y. Ultralong hydroxyapatite microtubes: solvothermal synthesis and application in drug loading and sustained drug release. CrystEngComm 2017, 19, 1965–1973.CrossRefGoogle Scholar
  26. 26.
    Zhang, X.; Lang, W. Z.; Xu, H. P.; Yan, X.; Guo, Y. J. The effects of hydroxyapatite nano whiskers and its synergism with polyvinylpyrrolidone on poly(vinylidene fluoride) hollow fiber ultrafiltration membranes. RSC Adv. 2015, 5, 21532–21543.CrossRefGoogle Scholar
  27. 27.
    Shi, C. T.; Lv, C. Z.; Wu, L.; Hou, X. D. Porous chitosan/hydroxyapatite composite membrane for dyes static and dynamic removal from aqueous solution. J. Hazard. Mater. 2017, 338, 241–249.CrossRefGoogle Scholar
  28. 28.
    Li, J. H.; Xu, Y. Y.; Zhu, L. P.; Wang, J. H.; Du, C. H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci. 2009, 326, 659–666.CrossRefGoogle Scholar
  29. 29.
    Jiang, J. H.; Zhang, P. B.; Zhu, L. P.; Zhu, B. K.; Xu, Y. Y. Improving antifouling ability and hemocompatibility of poly(vinylidene fluoride) membranes by polydopamine-mediated ATRP. J. Mater. Chem. B 2015, 3, 7698–7706.CrossRefGoogle Scholar
  30. 30.
    Li, J. H.; Wang, S. S.; Zhang, D. B.; Ni, X. X.; Zhang, Q. Q. Amino acids functionalized graphene oxide for enhanced hydrophilicity and antifouling property of poly(vinylidene fluoride) membranes. Chinese J. Polym. Sci. 2016, 34, 805–819.CrossRefGoogle Scholar
  31. 31.
    Zhu, Y. Z.; Xie, W.; Zhang, F.; Xing, T. L.; Jin, J. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl. Mater. Interfaces 2017, 9, 9603–9613.CrossRefGoogle Scholar
  32. 32.
    Jiang, X. (C.); Ding, J. F.; Kumar, A. Polyurethane-poly(vinylidene fluoride) (PU-PVDF) thin film composite membranes for gas separation. J. Membr. Sci. 2008, 323, 371–378.CrossRefGoogle Scholar
  33. 33.
    Boo, C.; Lee, J.; Elimelech, M. Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ. Sci. Technol. 2016, 50, 12275–12282.CrossRefGoogle Scholar
  34. 34.
    Gao, K.; Su, Y. L.; Zhou, L. J.; He, M. R.; Zhang, R. N.; Liu, Y. N.; Jiang, Z. Y. Creation of active-passive integrated mechanisms on membrane surfaces for superior antifouling and anti-bacterial properties. J. Membr. Sci. 2018, 548, 621–631.CrossRefGoogle Scholar
  35. 35.
    Zhang, W. B.; Hu, L.; Chen, H. M.; Gao, S. J.; Zhang, X. C.; Jin, J. Mineralized growth of Janus membrane with asymmetric wetting property for fast separation of a trace of blood. J. Mater. Chem. B 2017, 5, 4876–4882.CrossRefGoogle Scholar
  36. 36.
    Luo, C. Q.; Liu, Q. X. Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 8297–8307.CrossRefGoogle Scholar
  37. 37.
    Venault, A.; Hsu, C. H.; Ishihara, K.; Chang, Y. Zwitterionic bi-continuous membranes from a phosphobetaine copolymer/poly(vinylidene fluoride) blend via VIPS for biofouling mitigation. J. Membr. Sci. 2018, 550, 377–388.CrossRefGoogle Scholar
  38. 38.
    Li, J. H.; Zhang, D. B.; Ni, X. X.; Zheng, H.; Zhang, Q. Q. Excellent hydrophilic and anti-bacterial fouling PVDF membrane based on Ag nanoparticle self-assembled PCBMA polymer brush. Chinese J. Polym. Sci. 2017, 35, 809–822.CrossRefGoogle Scholar
  39. 39.
    Li, J. H.; Ni, X. X.; Zhang, D. B.; Zheng, H.; Wang, J. B.; Zhang, Q. Q. Engineering a self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties and hemocompatibility. Appl. Surf. Sci. 2018, 444, 672–690.CrossRefGoogle Scholar
  40. 40.
    Fang, X. F.; Li, J. S.; Li, X.; Pan, S. L.; Zhang, X.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chem. Eng. J. 2017, 314, 38–49.CrossRefGoogle Scholar
  41. 41.
    Aluigi, A.; Rombaldoni, F.; Tonetti, C.; Jannoke, L. Study of methylene blue adsorption on keratin nanofibrous membranes. J. Hazard. Mater. 2014, 268, 156–165.CrossRefGoogle Scholar
  42. 42.
    Li, Q.; Li, Y. H.; Ma, X. M.; Du, Q. J.; Sui, K. Y.; Wang, D. C.; Wang, C. P.; Li, H. L.; Xia, Y. Z. Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chem. Eng. J. 2017, 316, 623–630.CrossRefGoogle Scholar
  43. 43.
    Tan, P.; Sun, J.; Hua, Y. Y.; Fang, Z.; Bi, Q.; Chen, Y. C.; Cheng, J. H. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater. 2015, 297, 251–260.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jian-Hua Li
    • 1
    Email author
  • Hui Zheng
    • 1
  • Hua-Xiang Lin
    • 2
  • Bo-Xin Zhang
    • 1
  • Jia-Bin Wang
    • 1
  • Tong-Lei Li
    • 3
  • Qi-Qing Zhang
    • 1
  1. 1.Institute of Biomedical and Pharmaceutical TechnologyFuzhou UniversityFuzhouChina
  2. 2.State Key Laboratory of Photocatalysis on Energy and EnvironmentFuzhou UniversityFuzhouChina
  3. 3.Department of Industrial and Physical PharmacyPurdue UniversityWest LafayetteUSA

Personalised recommendations