Advertisement

Synthesis of Polycarbonate Block Terpolymers Using Robust Cobalt Catalyst Systems

  • Ying-Jie Jiang
  • Wei-Min RenEmail author
  • Ye Liu
  • Xiao-Bing LuEmail author
Article
  • 4 Downloads

Abstract

This contribution reports an efficient approach for preparing polycarbonate block terpolymers by immortal stepwise copolymerization of CO2 with different epoxides in the presence of enol chain transfer, mediated by robust cobalt catalyst systems consisting of the fluorine substituted salenCo(III)NO3 or biphenol-linker bimetallic Co(III) complex in conjunction with an ionic cocatalyst, PPNX (PPN = bis(triphenylphosphine)iminium, X = NO3 or 2,4-dinitrophenoxide). Various polycarbonate block terpolymers were obtained in perfectly unimodal distribution of their molecular weights with narrow polydispersity. They all possessed only one broad glass transition temperature, which could be adjusted by altering the length of different polycarbonate segments.

Keywords

Carbon dioxide (CO2Epoxides Polycarbonates Copolymerization Block terpolymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21690073) and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT-17R14).

References

  1. 1.
    Darensbourg, D. J. Making plastics from carbon dioxide. Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev. 2007, 107, 2388–2410.CrossRefGoogle Scholar
  2. 2.
    Qin, Y.; Wang X. Carbon dioxide-based copolymers: Environmental benefits of PPC, an industrially viable catalyst. Biotechnol. J. 2010, 5, 1164–1180.CrossRefGoogle Scholar
  3. 3.
    Qin, Y.; Gu, L.; Wang, X. Progress in functional carbon dioxide based aliphatic polycarbonates. Acta Polymerica Sinica (in Chinese) 2013, 600–608.Google Scholar
  4. 4.
    Li, Y.; Zhang, Y. Y.; Hu, L. F.; Zhang, X. H.; Du, B. Y.; Xu, J. T. Carbon dioxide-based copolymers with various architectures. Prog. Polym. Sci. 2018, 82, 120–157.CrossRefGoogle Scholar
  5. 5.
    Xu, Y.; Lin, L.; Xiao, M.; Wang, S.; Smith, A. T.; Sun, L.; Meng, Y. Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials. Prog. Polym. Sci. 2018, 82, 163–182.CrossRefGoogle Scholar
  6. 6.
    Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Polym. Lett. 1969, 7, 287–292.CrossRefGoogle Scholar
  7. 7.
    Klaus, S.; Lehenmeier, M. W.; Anderson, C. E.; Rieger, B. Recent advances in CO2/epoxide copolymerization-new strategies and cooperative mechanisms. Coord. Chem. Rev. 2011, 255, 1460–1479.CrossRefGoogle Scholar
  8. 8.
    Kember, M. R.; Buchard, A.; Williams, C. K. Catalysts for CO2/epoxide copolymerisation. Chem. Commun. 2011, 47, 141–163.CrossRefGoogle Scholar
  9. 9.
    Lu, X. B.; Darensbourg, D. J. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev. 2012, 41, 1462–1484.CrossRefGoogle Scholar
  10. 10.
    Luo, M.; Li, Y.; Zhang, Y. Y.; Zhang, X. H. Using carbon dioxide and its sulfur analogues as monomers in polymer synthesis. Polymer 2016, 82, 406–431.CrossRefGoogle Scholar
  11. 11.
    Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. Electronic and steric effects on catalysts for CO2/epoxide polymerization: Subtle modifications resulting in superior activities. Angew. Chem. Int. Ed. 2002, 41, 2599–2602.CrossRefGoogle Scholar
  12. 12.
    Kissling, S.; Lehenmeier, M. W.; Altenbuchner, P. T.; Kronast, A.; Reiter, M.; Deglmann, P.; Seemann, U. B.; Rieger, B. Dinuclear zinc catalysts with unprecedented activities for the co-polymerization of cyclohexene oxide and CO2. Chem. Commun. 2015, 51, 4579–4582.CrossRefGoogle Scholar
  13. 13.
    Nakano, K.; Kamada, T.; Nozaki, K. Selective formation of polycarbonate over cyclic carbonate: Copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew. Chem. Int. Ed 2006, 45, 7274–7277.CrossRefGoogle Scholar
  14. 14.
    Sujith, S.; Min, K. K.; Seong, J. E.; Na, S. J.; Lee, B. Y. A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew. Chem. Int. Ed. 2008, 47, 7306–7309.CrossRefGoogle Scholar
  15. 15.
    Ren, W. M.; Liu, Z. W.; Wen, Y. Q.; Zhang, R.; Lu, X. B. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J. Am. Chem. Soc. 2009, 131, 11509–11518.CrossRefGoogle Scholar
  16. 16.
    Xie, D.; Quan, Z.; Wang, X.; Zhao, X.; Wang, F. Terpolymerization of carbon dioxide, propylene oxide and cyclohexene oxide catalyzed by rare-earth ternary catalyst. Chem. J. Chin. Univ. 2005, 26, 2360–2362.Google Scholar
  17. 17.
    Shi, L.; Lu, X. B.; Zhang, R.; Peng, X. J.; Zhang, C. Q.; Li, J. F.; Peng, X. M. Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions. Macromolecules 2006, 39, 5679–5685.CrossRefGoogle Scholar
  18. 18.
    Coates, G. W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem. Rev. 2000, 100, 1223–1252.CrossRefGoogle Scholar
  19. 19.
    Lu, X. B.; Ren, W. M.; Wu, G. P. CO2 copolymers from epoxides: Catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 2012, 45, 1721–1735.CrossRefGoogle Scholar
  20. 20.
    Liu, Y.; Ren, W. M.; Liu, J.; Lu, X. B. Asymmetric copolymerization of CO2 with meso-epoxides mediatedby dinuclear co-balt(III) complexes: Unprecedented enantioselectivity and activity. Angew. Chem. Int. Ed. 2013, 52, 11594–11598.CrossRefGoogle Scholar
  21. 21.
    Lu, X. B.; Shi, L.; Wang, Y. M.; Zhang, R.; Zhang, Y. J.; Peng, X. J.; Zhang, Z. C.; Li, B. Design of highly active binary catalyst systems for CO2/epoxide copolymerization: Polymer selectivity, enantioselectivity, and stereochemistry control. J. Am. Chem. Soc. 2006, 128, 1664–1674.CrossRefGoogle Scholar
  22. 22.
    DiCiccio, A. M.; Longo, J. M.; Rodriguez-Calero, G. G.; Coates, G. W. development of highly active and regioselective catalysts for the copolymerization of epoxides with cyclic anhydrides: An unanticipated effect of electronic variation. J. Am. Chem. Soc. 2016, 138, 7107–7113.CrossRefGoogle Scholar
  23. 23.
    Aida, T.; Inoue, S. Metalloporphyrins as initiators for living and immortal polymerizations. Acc. Chem. Res. 1996, 29, 39–48.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State key laboratory of fine chemicalsDalian University of TechnologyDalianChina

Personalised recommendations