Advertisement

Preparation of Ultralow Molecular Weight Poly(vinyl chloride) with Submicrometer Particles via Precipitation Polymerization

  • Peng Cui
  • Chang-Tong Song
  • Xian-Hong ZhangEmail author
  • Dong Chen
  • Yu-Hong Ma
  • Wan-Tai YangEmail author
Article
  • 4 Downloads

Abstract

Poly(vinyl chloride), with ultralow molecular weight, produced by free radical polymerization either at high temperature or in the presence of chain transfer agents, is widely used as special resins and polymer process additives. This paper reports a new process, called self-stabilized precipitation polymerization, in which the polymerization of vinyl chloride monomer (VCM) is conducted in hydrocarbon diluents without addition of any suspending agent or emulsifier. The merits of this novel strategy include: (1) PVC resins with ultra-low number-average molecular weight (Mn) from 4000 to 15000, which is much lower than Mn of those prepared by conventional suspension and emulsion polymerizations, (2) sub-micrometer PVC particles with near spherical morphology, and (3) the very simple post-polymerization separation process. Under mild stirring, polymerization proceeds stably and smoothly. The influences of main process factors, such as solvents, initiator and monomer concentrations, polymerization time, and temperature on both particle morphology and Mn of the polymer products are investigated systematically. The molar ratio of -CH2-CHCl-/-CH=CH-CH2CHCl, a good indicator of structural defects, is about 1000/0.1 which means the low molecular weights do not result from chain transfer to the monomers. Then the mechanism of this polymerization is proposed. In summary, this novel polymerization technology provides a straightforward method for preparing PVC particulate products with low Mn.

Keywords

Precipitation polymerization Vinyl chloride Ultralow molecular weight Pure product 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51521062).

References

  1. 1.
    Saeki, Y.; Emura, T. Technical progresses for PVC production. Prog. Polym. Sci. 2002, 27, 2055–2131.CrossRefGoogle Scholar
  2. 2.
    Brandrup, J.; Immergut, E. H. Polymer handbook. Wiley: New York, 1989.Google Scholar
  3. 3.
    Xu, X.; Guo, S. A study on morphological structure of low molecular weight PVC prepared by vibromilling degradation. Polym. Plast. Technol. Eng. 1995, 34, 621–632.CrossRefGoogle Scholar
  4. 4.
    Huang, Z.; Pan, P.; Bao, Y. Z. Solution and aqueous miniemulsion polymerization of vinyl chloride mediated by a fluorinated xanthate. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2092–2101.CrossRefGoogle Scholar
  5. 5.
    Abreu, C. M.; Mendonça, P. V.; Serra, A. N. C.; Coelho, J. F.; Popov, A. V.; Gryn’ova, G.; Coote, M. L.; Guliashvili, T. Reversible addition-fragmentation chain transfer polymerization of vinyl chloride. Macromolecules 2012, 45, 2200–2208.CrossRefGoogle Scholar
  6. 6.
    Percec, V.; Popov, A. V.; Ramirez-castillo, E.; Weichold, O. Living radical polymerization of vinyl chloride initiated with iodoform and catalyzed by nascent Cu0/tris(2-aminoethyl)amine or polyethyleneimine in water at 25 °C proceeds by a new competing pathways mechanism. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3283–3299.CrossRefGoogle Scholar
  7. 7.
    Smallwood, P. The formation of grains of suspension poly(vinyl chloride). Polymer 1986, 27, 1609–1618.CrossRefGoogle Scholar
  8. 8.
    Georgiadou, S.; Thomas, N.; Gilbert, M.; Brooks, B. Nonaqueous polymerization of vinyl chloride: An environmentally friendly process. J. Appl. Polym. Sci. 2009, 112, 2472–2481.CrossRefGoogle Scholar
  9. 9.
    Balakrishnan, T.; Ford, W. T. Particle size control in suspension copolymerization of styrene, chloromethylstyrene, and divinylbenzene. J. Appl. Polym. Sci. 1982, 27, 133–138.CrossRefGoogle Scholar
  10. 10.
    Negre, M.; Bartholin, M.; Guyot, A. Functionalized resins, 1. Gel and macroporous chloromethylated styrenic resins prepared in the presence of toluene as a pore forming agent. Die Angew. Makromol. Chem. 1982, 106, 67–77.Google Scholar
  11. 11.
    Chonde, Y.; Liu, L. J.; Krieger, I. M. Preparation and surface modification of poly(vinylbenzyl chloride) latices. J. Appl. Polym. Sci. 1980, 25, 2407–2416.CrossRefGoogle Scholar
  12. 12.
    Prince, K. Water dilutable secondary stabilisers in suspension polymerisation of vinyl chloride monomer. Plast Rubber Compos. 1999, 28, 105–108.CrossRefGoogle Scholar
  13. 13.
    Sperling, L. H. Introduction to physical polymer science. John Wiley & Sons, 2005.CrossRefGoogle Scholar
  14. 14.
    Machleidt, R., The meson theory of nuclear forces and nuclear structure. in Advances in nuclear physics, Vol 19, ed. by Negele, J. W.; Vogt, E. Springer, Boston, MA, 1989, p. 189–376.CrossRefGoogle Scholar
  15. 15.
    Bao, Y.; Brooks, B. Particle features of poly(vinyl chloride)resins prepared by a new heterogeneous polymerization process. J. Appl. Polym. Sci. 2003, 90, 954–958.CrossRefGoogle Scholar
  16. 16.
    Butters, G. Particulate nature of PVC: Formation, structure and processing. Applied Science Publishers, 1982.Google Scholar
  17. 17.
    Xie, T.; Hamielec, A.; Wood, P.; Woods, D. Suspension, bulk, and emulsion polymerization of vinyl chloride-mechanism, kinetics, and reactor modelling. J. Vinyl Technol. 1991, 13, 2–25.CrossRefGoogle Scholar
  18. 18.
    Yuan, H.; Kalfas, G.; Ray, W. Suspension polymerization. J. Macromol. Sci., Part C: Polym. Rev. 1991, 31, 215–299.CrossRefGoogle Scholar
  19. 19.
    Cebollada, A.; Schmidt, M.; Farber, J.; Capiati, N.; Valles, E. Suspension polymerization of vinyl chloride. I. Influence of viscosity of suspension medium on resin properties. J. Appl. Polym. Sci. 1989, 37, 145–166.CrossRefGoogle Scholar
  20. 20.
    Freidlina, R. K.; Velichko, F.; Zlotskii, S.; Rakhmankulov, D.; Terent’ev, A. B. Radical telomerization. Khimiya, Moscow, 1988.Google Scholar
  21. 21.
    Mickley, H. S.; Michaels, A. S.; Moore, A. L. Kinetics of precipitation polymerization of vinyl chloride. J. Polym. Sci. 1962, 60, 121–140.CrossRefGoogle Scholar
  22. 22.
    Kronman, A.; Groshev, G.; Leshina, L.; Sitnikova, E.; Sulina, T. Polymerization of vinyl chloride in the presence of alcohols. Russian J. Appl. Chem. 2001, 74, 1007–1009.CrossRefGoogle Scholar
  23. 23.
    Xing, C. M.; Yang, W. T. A novel, facile method for the preparation of uniform, reactive maleic anhydride/vinyl acetate copolymer micro- and nanospheres. Macromol. Rapid Commun. 2004, 25, 1568–1574.CrossRefGoogle Scholar
  24. 24.
    Xing, C. M.; Yang, W. T. Stabilizer-free dispersion copolymerization of maleic anhydride and vinyl acetate. I. Effects of principal factors on microspheres. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3760–3770.CrossRefGoogle Scholar
  25. 25.
    Xing, C. M.; Yu, Y.; Yang, W. T. Stabilizer-free dispersion copolymerization of maleic anhydride and vinyl acetate. II. Polymerization features. Macromol. Chem. Phys. 2006, 207, 621–626.CrossRefGoogle Scholar
  26. 26.
    Liu, Z. J.; Chen, D.; Zhang, J. F.; Liao, H. D.; Chen, Y. Z.; Sun, Y. F.; Deng, J. Y.; Yang, W. T. Self-stabilized precipitation polymerization and its application. Research 2018, 2018, 9370490.CrossRefGoogle Scholar
  27. 27.
    Luo, W.; Liu, J. X.; Ma, Y. H.; Zhang, B.; Yang, W. T. Preparation of polymer nanoparticles from renewable biobased furfuryl alcohol and maleic anhydride by stabilizer-free dispersion polymerization. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3606–3617.CrossRefGoogle Scholar
  28. 28.
    Ramram, M. B.; Chen, D.; Ma, Y.; Wang, L.; Yang, W. Stabilizer-free precipitation copolymerization of renewable bio-based α-methylene-γ-butyrolactone and styrene. J. Macromol. Sci., Part A 2016, 53, 484–491.CrossRefGoogle Scholar
  29. 29.
    Barclay, L. Formation and structure of PVC particles. Angew. Makromol. Chem.: Appl. Macromol. Chem. Phys. 1976, 52, 1–20.CrossRefGoogle Scholar
  30. 30.
    Tseng, C. M.; Lu, Y. Y.; El-Aasser, M. S.; Vanderhoff, J. W. Uniform polymer particles by dispersion polymerization in alcohol. J. Polym. Sci., Part A: Polym. Chem. 1986, 24, 2995–3007.CrossRefGoogle Scholar
  31. 31.
    Thomson, B.; Rudin, A.; Lajoie, G. Dispersion copolymerization of styrene and divinylbenzene: Synthesis of monodisperse, uniformly crosslinked particles. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 345–357.CrossRefGoogle Scholar
  32. 32.
    Zhang, F.; Bai, Y. W.; Ma, Y. H.; Yang, W. T. Preparing of monodisperse and cation-charged polystyrene particles stabilized with polymerizable quarternary ammonium by dispersion polymerization in a methanol-water medium. J. Colloid Interf. Sci. 2009, 334, 13–21.CrossRefGoogle Scholar
  33. 33.
    Yan, Q.; Bai, Y. W.; Meng, Z.; Yang, W. T. Precipitation polymerization in acetic acid: Synthesis of monodisperse crosslinked poly(divinyl benzene) microspheres. J. Phys. Chem. B 2008, 112, 6914–6922.CrossRefGoogle Scholar
  34. 34.
    Chatelain, J. Two stage bulk polymerisation process of vinyl chloride. British Polym. J. 1973, 5, 457–465.CrossRefGoogle Scholar
  35. 35.
    Bao, Y. Z.; Brooks, B. W. Phaseequilibrium behavior of vinyl chloride/nbutane and its application in determination of vinyl chloride heterogeneous polymerization kinetics. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2179–2188.CrossRefGoogle Scholar
  36. 36.
    Bao, Y. Z.; Brooks, B. W. Influences of some polymerization conditions on particle properties of suspension poly(vinyl chloride) resin. J. Appl. Polym. Sci. 2002, 85, 1544–1552.CrossRefGoogle Scholar
  37. 37.
    Abreu, C. M. R.; Mendonça, P. V.; Serra, A. C.; Noble, B. B.; Guliashvili, T.; Nicolas, J.; Coote, M. L.; Coelho, J. F. J. Nitroxide-mediated polymerization of vinyl chloride at low temperature: Kinetic and computational studies. Macromolecules 2016, 49, 490–498.CrossRefGoogle Scholar
  38. 38.
    Hansen, F. K.; Ugelstad, J. Particle nucleation in emulsion polymerization. II. Nucleation in emulsifier-free systems investigated by seed polymerization. J. Polym. Sci., Part A: Polym. Chem. 1979, 17, 3033–3045.Google Scholar
  39. 39.
    Goodall, A. R.; Wilkinson, M. C.; Hearn, J. Mechanism of emulsion polymerization of styrene in soap-free systems. J. Polym. Sci., Part A: Polym. Chem. 1977, 15, 2193–2218.Google Scholar
  40. 40.
    Hansen, F. K.; Ugelstad, J. Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. J. Polym. Sci., Part A: Polym. Chem. 1978, 16, 1953–1979.Google Scholar
  41. 41.
    Shen, S.; Sudol, E. D.; El-Aasser, M. S. Dispersion polymerization of methyl methacrylate: Mechanism of particle formation. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1087–1100.CrossRefGoogle Scholar
  42. 42.
    Xu, J.; Jung, K.; Boyer, C. Oxygen tolerance study of photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization mediated by Ru(bpy)3Cl2. Macromolecules 2014, 47, 4217–4229.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.College of Material Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations