Advertisement

Effect of Molybdenum Disulfide Exfoliation Conditions on the Mechanical Properties of Epoxy Nanocomposites

  • Bin ChenEmail author
  • Bao-Jia Ni
  • Meng-Xiang Fu
  • Hang Zhong
  • Wei-Feng Jiang
  • Si-Yuan Liu
  • He-Xin ZhangEmail author
  • Keun-Byoung YoonEmail author
Article
  • 7 Downloads

Abstract

In this work, the MoS2 fillers were prepared through chemical exfoliation method and used as fillers to fabricate epoxy (EP)/MoS2 nanocomposites. The effects of molybdenum disulfide (MoS2) intercalation conditions on the properties of EP/MoS2 nanocomposites were investigated. As the intercalation time was prolonged, the surface of MoS2 exhibited a totally crumpled structure and more functional groups formed. Because of the higher functional group concentration, the interfacial adhesion force between EP and MoS2 was enhanced. With the addition of 1.0 wt% exfoliated MoS2 fillers, the tensile strength and tensile modulus of EP were even improved ~500% and ~6800%, respectively. Therefore, this work provides a facile way to produce high-performance EP nanocomposites.

Keywords

Epoxy Molybdenum disulfide Nanocomposite Mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, A.; Xu, W.; Wang, G.; Wang, X. Novel strategy for molybdenum disulfide nanosheets grown on titanate nanotubes for enhancing the flame retardancy and smoke suppression of epoxy resin. J. Appl. Polym. Sci. 2017, 135, 46064.CrossRefGoogle Scholar
  2. 2.
    Qiang, H.; Liu, M.; Chen, J.; Wan, Q.; Tian, J.; Long, H.; Jiang, R.; Wen, Y.; Zhang, X.; Wei, Y. Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Appl. Surf. Sci. 2017, 419, 35–44.CrossRefGoogle Scholar
  3. 3.
    Zhang, H. X.; Ko, E. B.; Park, J. H.; Moon, Y. K.; Park, B. S.; Zhang, X. Q.; Yoon, K. B. Preparation and properties of polyethylene/ dodecanethiol-MoS2 nanocomposites with dodecanethiol- MoS2/MgCl2-supported Ziegler-Natta catalyst via an in situ polymerization method. Polymer 2017, 108, 223–229.CrossRefGoogle Scholar
  4. 4.
    Xuan, D.; Zhou, Y.; Nie, W.; Chen, P. Sodium alginate-assisted exfoliation of MoS2 and its reinforcement in polymer nanocomposites. Carbohydr. Polym. 2017, 155, 40–48.CrossRefGoogle Scholar
  5. 5.
    Sorrentino, A.; Altavilla, C.; Merola, M.; Senatore, A.; Ciambelli, P.; Iannace, S. Nanosheets of MoS2-oleylamine as hybrid filler for self-lubricating polymer composites: Thermal, tribological, and mechanical properties. Polym. Compos. 2015, 36, 1124–1134.CrossRefGoogle Scholar
  6. 6.
    O’Neill, A.; Khan, U.; Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 2012, 24, 2414–2421.CrossRefGoogle Scholar
  7. 7.
    Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; Hs, V. D. Z.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.CrossRefGoogle Scholar
  8. 8.
    Thakur, V. K.; Thakur, M. K. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 2014, 109, 102–117.CrossRefGoogle Scholar
  9. 9.
    Nichols, M. E.; Gerlock, J. L. Rates of photooxidation induced crosslinking and chain scission in thermoset polymer coatings II. Effect of hindered amine light stabilizer and ultraviolet light absorber additives. Polym. Degrad. Stab. 2000, 69, 197–207.CrossRefGoogle Scholar
  10. 10.
    Gorowara, R. L.; Kosik, W. E.; Mcknight, S. H.; Mccullough, R. L. Molecular characterization of glass fiber surface coatings for thermosetting polymer matrix/glass fiber composites. Compos. Part A-Appl. Sci. Manuf. 2001, 32, 323–329.CrossRefGoogle Scholar
  11. 11.
    Brennan, B.; Spencer, S. J.; Belsey, N. A.; Faris, T.; Cronin, H.; Silva, S. R. P.; Sainsbury, T.; Gilmore, I. S.; Stoeva, Z.; Pollard, A. J. Structural, chemical and electrical characterisation of conductive graphene-polymer composite films. Appl. Surf. Sci. 2017, 403, 403–412.CrossRefGoogle Scholar
  12. 12.
    Dong, H.; Yi, X.; Au, X.; Zhang, C.; Yan, L.; Deng, H. Development of interleaved fibre-reinforced thermoset polymer matrix composites. Acta Materiae Compositae Sinica 2014, 31, 273–285.Google Scholar
  13. 13.
    Wang, J.; Zhang, D.; Zhang, Y.; Cai, W.; Yao, C.; Hu, Y.; Hu, W. Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane. J. Hazard. Mater. 2019, 362, 482–494.CrossRefGoogle Scholar
  14. 14.
    Wu, K.; Song, L.; Hu, Y.; Lu, H.; Kandola, B. K.; Kandare, E. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog. Org. Coat. 2009, 65, 490–497.CrossRefGoogle Scholar
  15. 15.
    Ying, L.; Mao, S. Study on the properties and application of epoxy resin/polyurethane semiinterpenetrating polymer networks. J. Appl. Polym. 1996, 61, 2059–2063.CrossRefGoogle Scholar
  16. 16.
    Moslem Mansour Lakouraj; Ghasem Rahpaima; Ehsan Nazarzadeh Zare. Effect of functionalized magnetite nanoparticles and diaminoxanthone on the curing, thermal degradation kinetic and corrosion property of diglycidyl ether of bisphenol A-based epoxy resin. Chinese J. Polym. Sci. 2014, 32, 1489–1499.CrossRefGoogle Scholar
  17. 17.
    Yan, H.; Jing, D. Q.; Hou, X. L. Chemical degradation of amine-cured DGEBA epoxy resin in supercritical 1-propanol for recycling carbon fiber from composites. Chinese J. Polym. Sci. 2014, 32, 1550–1563.CrossRefGoogle Scholar
  18. 18.
    Azeez, A. A.; Rhee, K. Y.; Park, S. J.; Hui, D. Epoxy clay nanocomposites-Processing, properties and applications: A review. Compos. Part B-Eng. 2013, 45, 308–320.CrossRefGoogle Scholar
  19. 19.
    Jiang, X.; Sun, Y.; Zhang, H.; Hou, L. Preparation and characterization of quaternized poly(vinyl alcohol)/chitosan/MoS2 composite anion exchange membranes with high selectivity. Carbohydr. Polym. 2017, 180, 96–103.CrossRefGoogle Scholar
  20. 20.
    Feng, X.; Wen, P.; Cheng, Y.; Liu, L.; Tai, Q.; Hu, Y.; Liew, K. M. Defect-free MoS2 nanosheets: Advanced nanofillers for polymer nanocomposites. Compos. Part A-Appl. Sci. Manuf. 2016, 81, 61–68.CrossRefGoogle Scholar
  21. 21.
    Wang, X.; Xing, W.; Feng, X.; Yu, B.; Song, L.; Guan, H. Y.; Hu, Y. Enhanced mechanical and barrier properties of polyurethane nanocomposite films with randomly distributed molybdenum disulfide nanosheets. Compos. Sci. Technol. 2016, 127, 142–148.CrossRefGoogle Scholar
  22. 22.
    Matusinovic, Z.; Shukla, R.; Manias, E.; Hogshead, C. G.; Wilkiea, C. A. Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polym. Degrad. Stab. 2012, 97, 2481–2486.CrossRefGoogle Scholar
  23. 23.
    Wang, J.; Ma, C.; Mu, X.; Cai, W.; Liu, L.; Zhou, X.; Hu, W.; Hu, Y. Construction of multifunctional MoSe2 hybrid towards the simultaneous improvements in fire safety and mechanical property of polymer. J. Hazard. Mater. 2018, 352, 36–46.CrossRefGoogle Scholar
  24. 24.
    Zhou, K.; Liu, J.; Gui, Z.; Hu, Y.; Jiang, S. The influence of melamine phosphate modified MoS2 on the thermal and flammability of poly(butylene succinate) composites: The influence of melamine phosphate modified MoS2. Polym. Adv. Technol. 2016, 27, 1397–1400.CrossRefGoogle Scholar
  25. 25.
    Zeng, G.; Liu, M.; Liu, X.; Huang, Q.; Xu, D.; Mao, L.; Huang, H.; Deng, F.; Zhang, X.; Wei, Y. Mussel inspired preparation of MoS2 based polymer nanocomposites: The case of poly- PEGMA. Appl. Surf. Sci. 2016, 387, 399–405.CrossRefGoogle Scholar
  26. 26.
    Zhou, K.; Liu, J.; Shi, Y.; Jiang, S.; Wang, D.; Hu, Y.; Gui, Z. MoS2 nanolayers grown on carbon nanotubes: An advanced reinforcement for epoxy composites. ACS Appl. Mater. Interface 2015, 7, 6070–6081.CrossRefGoogle Scholar
  27. 27.
    Eksik, O.; Gao, J.; Shojaee, S. A.; Thomas, A.; Chow, P.; Bartolucci, S. F.; Lucca, D. A.; Koratkar, N. Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives. ACS Nano 2014, 8, 5282–5289.CrossRefGoogle Scholar
  28. 28.
    Chen, B.; Ni, B. J.; Liu, W. T.; Ye, Q. Y.; Liu, S. Y.; Zhang, H. X.; Yoon, K. B. Mechanical properties of epoxy nanocomposites filled with melamine functionalized molybdenum disulfide. RSC Adv. 2018, 8, 20450–20455.CrossRefGoogle Scholar
  29. 29.
    Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. Inclusion systems of organic molecules in restacked single-layer molybdenum disulfide. Science 1989, 246, 369–71.CrossRefGoogle Scholar
  30. 30.
    Divigalpitiya, W. M. R.; Morrison, S. R.; Frindt, R. F. Thin oriented films of molybdenum disulphide. Thin Solid Films 1990, 186, 177–192.CrossRefGoogle Scholar
  31. 31.
    Gönen, M.; Egbuchunam, T. O.; Balköse, D.; Inal, F.; Ülkü, S. Preparation and characterization of magnesium stearate, cobalt stearate, and copper stearate and their effects on poly(vinyl chloride) dehydrochlorination. J. Vinyl Addit. Technol. 2014, 47, 131–137.Google Scholar
  32. 32.
    Guo, Y.; Wang, Z.; Shao, H.; Jiang, X. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 2013, 52, 583–589.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShenyang University of Chemical TechnologyShenyangChina
  2. 2.School of Chemistry & Chemical EngineeringAnhui University of TechnologyMaanshanChina
  3. 3.Department of Polymer Science and EngineeringKyungpook National UniversityDaeguSouth Korea

Personalised recommendations