Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 10, pp 974–980 | Cite as

A Phenol-containing α-Diimine Ligand for Nickel- and Palladium-Catalyzed Ethylene Polymerization

  • Chen Tan
  • Wen-Min Pang
  • Chang-Le ChenEmail author
Article

Abstract

A phenol-containing dibenzhydryl-based α-diimine ligand bearing hydroxy group on para-position of aniline moiety was designed, synthesized, and investigated in Ni- and Pd-catalyzed ethylene polymerization. The Ni complex bearing hydroxy groups resulted in not only high polyethylene molecular weight (Mn up to 1.5 × 106), but also significantly increased melting temperature (Tm up to 123 °C) and greatly decreased branching density (33/1000C) versus the Ni catalyst bearing OMe group on para-position of aniline moiety. This is consistent with the hypothesis that the deprotonation of the phenol moiety generated a phenoxide bearing strong electrondonating O substituent by methylaluminoxane (MAO) cocatalyst. The Pd complexes bearing hydroxy groups exhibited similar catalytic properties to those of the Pd catalyst bearing OMe groups did.

Keywords

α-Diimine Ethylene polymerization Electronic effect Palladium Nickel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21690071).

Supplementary material

10118_2019_2232_MOESM1_ESM.pdf (4.6 mb)
A Phenol-containing α-Diimine Ligand for Nickel- and Palladium- Catalyzed Ethylene Polymerization

References

  1. 1.
    Huynh, H. V. Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem. Rev. 2018, 118, 9457–9492.CrossRefGoogle Scholar
  2. 2.
    Li, Y.; Zhang, Y. Y.; Hu, L. F.; Zhang, X. H.; Du, B. Y.; Xu, J. T. Carbon dioxide-based copolymers with various architectures. Prog. Polym. Sci. 2018, 82, 120–157.CrossRefGoogle Scholar
  3. 3.
    Van Zee, N. J.; Sanford, M. J.; Coates, G. W. Electronic effects of aluminum complexes in the copolymerization of propylene oxide with tricyclic anhydrides: Access to well-defined, functionalizable aliphatic polyesters. J. Am. Chem. Soc. 2016, 138, 2755–2761.CrossRefGoogle Scholar
  4. 4.
    Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P. O.; Wu, Y. D.; Sigman, M. S.; Wiest, O. Mechanism, reactivity, and selectivity in palladium-catalyzed redox-relay Heck arylations of alkenyl alcohols. J. Am. Chem. Soc. 2014, 136, 1960–1967.CrossRefGoogle Scholar
  5. 5.
    Cusso, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Asymmetric epoxidation with H2O2 by manipulating the electronic properties of non-heme iron catalysts. J. Am. Chem. Soc. 2013, 135, 14871–14878.CrossRefGoogle Scholar
  6. 6.
    Chen, M. S.; White, M. C. A predictably selective aliphatic C?H oxidation reaction for complex molecule synthesis. Science 2007, 318, 783–787.CrossRefGoogle Scholar
  7. 7.
    Wang, F. Z.; Tian, S. S.; Lia, R. P.; Li, W. M.; Chen, C. L. Ligand steric effects on naphthyl-α-diimine nickel catalyzed a-olefin polymerization. Chinese J. Polym. Sci. 2018, 36, 157–162.CrossRefGoogle Scholar
  8. 8.
    Kaiser, J. M.; Long, B. K. Recent developments in redox-active olefin polymerization catalysts. Coord. Chem. Rev. 2018, 372, 141–152.CrossRefGoogle Scholar
  9. 9.
    Ito, S. Palladium-catalyzed homo- and copolymerization of polar monomers: Synthesis of aliphatic and aromatic polymers. Bull. Chem. Soc. Jpn. 2018, 91, 251–261.CrossRefGoogle Scholar
  10. 10.
    Si, G. F.; Na, Y. N.; Chen, C. L. Ethylene (co)oligomerization by phosphine-pyridine based palladium and nickel catalysts. ChemCatChem 2018, 10, 5135–5140.CrossRefGoogle Scholar
  11. 11.
    Fu, X.; Zhang, L.; Tanaka, R.; Shiono, T.; Cai, Z. Highly robust nickel catalysts containing anilinonaphthoquinone ligand for copolymerization of ethylene and polar monomers. Macromolecules 2017, 50, 9216–9221.CrossRefGoogle Scholar
  12. 12.
    Jian, Z. B. Synthesis of functionalized polyolefins: Design from catalysts to polar monomers. Acta Polymerica Sinica (in Chinese) 2018, 11, 1359–1371.Google Scholar
  13. 13.
    Ma, Z.; Yang, W.; Sun, W. H. Recent progress on transition metal (Fe, Co, Ni, Ti and V) complex catalysts in olefin polymerization with high thermal stability. Chinese J. Chem. 2017, 35, 531–540.CrossRefGoogle Scholar
  14. 14.
    Song, X. Y.; Ma, Q.; Yuan, H. B.; Cai, Z. G. Synthesis of hydroxy-functionalized ultrahigh molecular weight polyethylene using fluorenylamidotitanium complex. Chinese J. Polym. Sci. 2018, 36, 171–175.CrossRefGoogle Scholar
  15. 15.
    Zhang, D.; Chen, C. L. Influence of polyethylene glycol unit on palladium and nickel catalyzed ethylene polymerization and copolymerization. Angew. Chem. Int. Ed. 2017, 56, 14672–14676.CrossRefGoogle Scholar
  16. 16.
    Chen, M.; Chen, C. L. Polar functionalized polyolefins: New catalysts, new modulation strategies and new materials. Acta Polymerica Sinica (in Chinese) 2018, 11, 1372–1384.Google Scholar
  17. 17.
    Guo, L. H.; Liu, W.; Chen, C. L. Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers. Mater. Chem. Front. 2017, 1, 2487–2494.CrossRefGoogle Scholar
  18. 18.
    Chen, C. L. Designing transition metal catalysts for olefin polymerization and copolymerization: Beyond electronic and steric tuning. Nat. Rev. Chem. 2018, 2, 6–14.CrossRefGoogle Scholar
  19. 19.
    Zhao, M. H.; Chen, C. L. Accessing multiple catalytically active states in redox controlled olefin polymerization. ACS Catal. 2017, 7, 7490–7494.CrossRefGoogle Scholar
  20. 20.
    Guo, L. H.; Dai, S. Y.; Sui, X. L.; Chen, C. L. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal. 2016, 6, 428–441.CrossRefGoogle Scholar
  21. 21.
    Chen, C. L. Redox controlled polymerization and copolymerization. ACS Catal. 2018, 8, 5506–5514.CrossRefGoogle Scholar
  22. 22.
    Zuideveld, M. A.; Wehrmann, P.; Röhr, C.; Mecking, S. Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(II) complexes. Angew. Chem. Int. Ed. 2004, 43, 869–873.CrossRefGoogle Scholar
  23. 23.
    Gao, H. Y.; Ke, Z. F.; Pei, L. X.; Song, K. M.; Wu, Q. Drastic ligand electronic effect on anilido-imino nickel catalysts toward ethylene polymerization. Polymer 2007, 48, 7249–7254.CrossRefGoogle Scholar
  24. 24.
    Wucher, P.; Goldbach, V.; Mecking, S. Electronic influences in phosphinesulfonato palladium(II) polymerization catalysts. Organometallics 2013, 32, 4516–4522.CrossRefGoogle Scholar
  25. 25.
    Chen, M.; Chen, C. L. Rational design of high-performance phosphine sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers. ACS Catal. 2017, 7, 1308–1312.CrossRefGoogle Scholar
  26. 26.
    Liang, T.; Chen, C. L. Position makes the difference: Electronic effects in nickel-catalyzed ethylene polymerizations and copolymerizations. Inorg. Chem. 2018, 57, 14913–14919.CrossRefGoogle Scholar
  27. 27.
    Gao, J. X.; Yang, B. P.; Chen, C. L. Sterics versus electronics: Imine/phosphine-oxide-based nickel catalysts for ethylene polymerization and copolymerization. J. Catal. 2019, 369, 233–238.CrossRefGoogle Scholar
  28. 28.
    Popeney, C. S.; Levins, C. M.; Guan, Z. Systematic investigation of ligand substitution effects in cyclophane-based nickel(II) and palladium(II) olefin polymerization catalysts. Organometallics 2011, 30, 2432–2452.CrossRefGoogle Scholar
  29. 29.
    Popeney, C.; Guan Z. Ligand electronic effects on late transition metal polymerization catalysts. Organometallics 2005, 24, 1145–1155.CrossRefGoogle Scholar
  30. 30.
    Popeney, C. S.; Guan Z. Effect of ligand electronics on the stability and chain transfer rates of substituted Pd(II) α-diimine catalysts. Macromolecules 2010, 43, 4091–4097.CrossRefGoogle Scholar
  31. 31.
    Dai, S. Y.; Sui, X. L.; Chen, C. L. Highly robust palladium(II) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed. 2015, 54, 9948–9953.CrossRefGoogle Scholar
  32. 32.
    Guo, L. H.; Dai, S. Y.; Chen, C. L. Investigations of the ligand electronic effects on α-diimine nickel(II) catalyzed ethylene polymerization. Polymers 2016, 8, 37–46.CrossRefGoogle Scholar
  33. 33.
    Dai, S. Y.; Chen, C. L. Direct synthesis of functionalized highmolecular-weight polyethylene by copolymerization of ethylene with polar monomers. Angew. Chem. Int. Ed. 2016, 55, 13281–13285.CrossRefGoogle Scholar
  34. 34.
    Dai, S. Y.; Chen, C. L. Palladium-catalyzed direct synthesis of various branched, carboxylic acid-functionalized polyolefins: Characterization, derivatization, and properties. Macromolecules 2018, 51, 6818–6824.CrossRefGoogle Scholar
  35. 35.
    Na, Y. N.; Dai, S. Y.; Chen, C. L. Direct synthesis of polar-functionalized linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE). Macromolecules 2018, 51, 4040–4048.CrossRefGoogle Scholar
  36. 36.
    Zou, C.; Dai, S. Y.; Chen, C. L. Ethylene polymerization and copolymerization using nickel 2-iminopyridine-N-oxide catalysts: Modulation of polymer molecular weights and molecularweight distributions. Macromolecules 2018, 51, 49–56.CrossRefGoogle Scholar
  37. 37.
    Fang, J.; Sui, X. L.; Li, Y. G.; Chen, C. L. Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization. Polym. Chem. 2018, 9, 4143–4149.CrossRefGoogle Scholar
  38. 38.
    Zhou, S. X.; Chen, C. L. Synthesis of silicon-functionalized polyolefins by subsequent cobalt-catalyzed dehydrogenative silylation and nickel-catalyzed copolymerization. Sci. Bull. 2018, 63, 441–445.CrossRefGoogle Scholar
  39. 39.
    Lian, K.; Zhu, Y.; Li, W.; Dai, S. Y.; Chen, C. L. Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization. Macromolecules 2017, 50, 6074–6080.CrossRefGoogle Scholar
  40. 40.
    Sui, X. L.; Hong, C. W.; Pang, W. M.; Chen, C. L. Unsymmetrical α-diimine palladium catalysts and their properties in olefin (co) polymerization. Mater. Chem. Front. 2017, 1, 967–972.CrossRefGoogle Scholar
  41. 41.
    Hansch, C.; Leo, A.; Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195.CrossRefGoogle Scholar
  42. 42.
    Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 2009, 48, 3244–3266.CrossRefGoogle Scholar
  43. 43.
    Tian, Y.; Chen, C. Y.; Yang, C. C.; Young, A. C.; Jang, S. H.; Chen, W. C.; Alex, K. Y. J. 2-(2'-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions. Chem. Mater. 2008, 20, 1977–1987.CrossRefGoogle Scholar
  44. 44.
    Yang, P.; Zhao, J.; Wu, W.; Yu, X.; Liu, Y. Accessing the long-lived triplet excited states in bodipy-conjugated 2-(2-hydroxyphenyl) benzothiazole/benzoxazoles and applications as organic triplet photosensitizers for photooxidations. J. Org. Chem. 2012, 77, 6166–6178.CrossRefGoogle Scholar
  45. 45.
    Khan, S. A.; Azam, S. First principle investigation of electronic structure, chemical bonding and optical properties of tetrabarium gallium trinitride oxide single crystal. Mater. Res. Bull. 2015, 70, 436–441.CrossRefGoogle Scholar
  46. 46.
    Takagi, S.; Orimo, S. Recent progress in hydrogen-rich materials from the perspective of bonding flexibility of hydrogen. Scripta Mater. 2015, 109, 1–5.CrossRefGoogle Scholar
  47. 47.
    Pauling, L. in The nature of the chemical bond, Cornell University Press, Ithaca, NY, 1967.Google Scholar
  48. 48.
    Riilke, R. E.; Ernsting, J. M.; Spelt, A. L.; Elsevier, C. J.; van Leeuwelqs, R. W. N. M.; Vrieze, K. NMR study on the coordination behavior of dissymmetric terdentate trinitrogen ligands on methylpalladium(II) compounds. Inorg. Chem. 1993, 32, 5769–5778.CrossRefGoogle Scholar
  49. 49.
    Gomes, C. S. B.; Costa, S. I.; Silva, L. C.; Jimenez-Tenorio, M.; Valerga, P.; Puerta, M. C.; Gomes, P. T. Cationic R-substituted-indenyl nickel(II) complexes of arsine and stibine ligands: Synthesis, characterization, and catalytic behavior in the oligomerization of styrene. Eur. J. Inorg. Chem. 2018, 597–607.Google Scholar
  50. 50.
    Kaliner, M.; Strassner, T. Tunable aryl alkyl ionic liquids with weakly coordinating bulky borate anion. Tetrahedron Lett. 2016, 57, 3453–3456.CrossRefGoogle Scholar
  51. 51.
    Pei, L.; Liu, F.; Liao, H.; Gao, J.; Zhong, L.; Gao, H.; Wu, Q. Synthesis of polyethylenes with controlled branching with α-diimine nickel catalysts and revisiting formation of long-chain branching. ACS Catal. 2018, 8, 1104–1113.CrossRefGoogle Scholar
  52. 52.
    Zhong, S.; Tan, Y.; Zhong, L.; Gao, J.; Liao, H.; Jiang, L.; Gao, H.; Wu, Q. Precision synthesis of ethylene and polar monomer copolymers by palladium-catalyzed living coordination copolymerization. Macromolecules 2017, 50, 5661–5669.CrossRefGoogle Scholar
  53. 53.
    Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimine-nickel-catalyzed (co) polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 2017, 50, 2675–2682.CrossRefGoogle Scholar
  54. 54.
    Liao, H.; Zhong, L.; Xiao, Z.; Zheng, T.; Gao, H.; Wu, Q. α-Diamine nickel catalysts with nonplanar chelate rings for ethylene polymerization. Chem. Eur. J. 2016, 22, 14048–14055.CrossRefGoogle Scholar
  55. 55.
    Hu, H.; Gao, H.; Chen, D.; Li, G.; Tan, Y.; Liang, G.; Zhu, F.; Wu, Q. Ligand-directed regioselectivity in amine–imine nickelcatalyzed 1-hexene polymerization. ACS Catal. 2015, 5, 122–128.CrossRefGoogle Scholar
  56. 56.
    Hu, H.; Zhang, L.; Gao, H.; Zhu, F.; Wu, Q. Design of thermally stable amine-imine nickel catalyst precursors for living polymerization of ethylene: Effect of ligand substituents on catalytic behavior and polymer properties. Chem. Eur. J. 2014, 20, 3225–3233.CrossRefGoogle Scholar
  57. 57.
    Liu, J.; Chen, D.; Wu, H.; Xiao, Z.; Gao, H.; Zhu, F.; Wu, Q. Polymerization of α-olefins using a camphyl α-diimine nickel catalyst at elevated temperature. Macromolecules 2014, 47, 3325–3331.CrossRefGoogle Scholar
  58. 58.
    Zai, S.; Gao, H.; Huang, Z.; Hu, H.; Wu, H.; Wu, Q. Substituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerization. ACS Catal. 2012, 2, 433–440.CrossRefGoogle Scholar
  59. 59.
    Gao, H.; Liu, X.; Tang, Y.; Pan, J.; Wu, Q. Living/controlled polymerization of 4-methyl-1-pentene with α-diimine nickel-diethylaluminium chloride: Effect of alkylaluminium cocatalysts. Polym. Chem. 2011, 2, 1398–1403.CrossRefGoogle Scholar
  60. 60.
    Liu, F. S.; Hu, H. B.; Xu, Y.; Guo, L. H.; Zai, S. B.; Song, K. M.; Gao, H. Y.; Zhang, L.; Zhu, F. M.; Wu, Q. Thermostable α-diimine nickel(II) catalyst for ethylene polymerization: Effects of the substituted backbone structure on catalytic properties and branching structure of polyethylene. Macromolecules 2009, 42, 7789–7796.CrossRefGoogle Scholar
  61. 61.
    CCDC 1887662 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.Google Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations