Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 10, pp 959–965 | Cite as

Regioselective Polymerizations of α-Olefins with an α-Diamine Nickel Catalyst

  • Heng Liao
  • Jie Gao
  • Liu Zhong
  • Hai-Yang GaoEmail author
  • Qing Wu
Article

Abstract

Polymerizations of linear α-olefins (CnH2n, CH2 = CH―R, R = Cn−2) catalyzed by early transition metals typically afford amorphous polymers with alkyl chains (Cn−2), while chain-straightening polymerizations of α-olefins with nickel-based catalysts produce semicrystalline polyolefins. Polymerizations of various α-olefins were carried out using an α-diamine nickel catalyst with a significantly distorted chelating ring. The influences of temperature, monomer concentration, and chain length of α-olefins on polyolefin microstructure were examined in detail. The α-diamine nickel catalyst realized highly regioselective 2,1-insertion of α-olefins regardless of reaction temperature and monomer concentration. Increased chain length of α-olefins led to the formation of more linear polyolefin. Semicrystalline polyolefins with high melting temperatures (Tm) were made from α-olefins through highly regioselective 2,1-insertion and precise chain-straightening.

Keywords

Nickel catalyst α-Olefin Polymerization Regioselectivity Chain walking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21674130, 51873234), Natural Science Foundation of Guangdong Province (No. 2017A030310 349), Fundamental Research Funds for the Central Universities (No. 17lgjc02), and PetroChina Innovation Foundation (No. 2017D- 5007-0505).

Supplementary material

10118_2019_2227_MOESM1_ESM.pdf (279 kb)
Regioselective Polymerizations of α-Olefins with an α-Diamine Nickel Catalyst

References

  1. 1.
    Coates, G. W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem. Rev. 2000, 100, 1223–1252.CrossRefGoogle Scholar
  2. 2.
    Coates, G. W.; Hustad, P. D.; Reinartz, S. Catalysts for the living insertion polymerization of alkenes: Access to new polyolefin architectures using Ziegler-Natta chemistry. Angew. Chem. Int. Ed. 2002, 41, 2236–2257.CrossRefGoogle Scholar
  3. 3.
    Lodge, T. P. Block copolymers: Past successes and future challenges. Macromol. Chem. Phys. 2003, 204, 265–273.CrossRefGoogle Scholar
  4. 4.
    Mülhaupt, R. Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler’s catalysts. Macromol. Chem. Phys. 2003, 204, 289–327.CrossRefGoogle Scholar
  5. 5.
    Guan, Z. Recent progress of catalytic polymerization for controlling polymer topology. Chem. Asian J. 2010, 5, 1058–1070.CrossRefGoogle Scholar
  6. 6.
    Wang, Z.; Liu, Q.; Solan, G. A.; Sun, W. H. Recent advances in Ni-mediated ethylene chain growth: Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coord. Chem. Rev. 2017, 350, 68–83.CrossRefGoogle Scholar
  7. 7.
    Chen, C. Designing catalysts for olefin polymerization and copolymerization: Beyond electronic and steric tuning. Nat. Rev. Chem. 2018, 2, 6–14.CrossRefGoogle Scholar
  8. 8.
    Chen, C. Redox-controlled polymerization and copolymerization. ACS Catal. 2018, 8, 5506–5514.CrossRefGoogle Scholar
  9. 9.
    Guo, L.; Liu, W.; Chen, C. Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers. Mater. Chem. Front. 2017, 1, 2487–2494.CrossRefGoogle Scholar
  10. 10.
    Chen, M.; Chen, C. Polar and functionalized polyolefins: New catalysts, new modulation strategies and new materials. Acta Polymerica Sinica (in Chinese). 2018, 1372–1384.Google Scholar
  11. 11.
    Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. The search for new-generation olefin polymerization catalysts: Life beyond metallocenes. Angew. Chem. Int. Ed. 1999, 38, 428–447.CrossRefGoogle Scholar
  12. 12.
    Gibson, V. C.; Spitzmesser, S. K. Advances in non-metallocene olefin polymerization catalysis. Chem. Rev. 2003, 103, 283–316.CrossRefGoogle Scholar
  13. 13.
    Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem. Int. Ed. 1995, 34, 1143–1170.CrossRefGoogle Scholar
  14. 14.
    Baier, M. C.; Zuideveld, M. A.; Mecking, S. Post-metallocenes in the industrial production of polyolefins. Angew. Chem. Int. Ed. 2014, 53, 9722–9744.CrossRefGoogle Scholar
  15. 15.
    Stadler, F. J.; Piel, C.; Klimke, K.; Kaschta, J.; Parkinson, M.; Wilhelm, M.; Kaminsky, W.; Münstedt, H. Influence of type and content of various comonomers on long-chain branching of ethene/α-olefin copolymers. Macromolecules 2006, 39, 1474–1482.CrossRefGoogle Scholar
  16. 16.
    Klosin, J.; Fontaine, P. P.; Figueroa, R. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions. Acc. Chem. Res. 2015, 48, 2004–2016.CrossRefGoogle Scholar
  17. 17.
    Murphy, W. R.; Blain, D. A.; Galiano-Roth, A. S.; Galvin, P. A. Benefits of synthetic lubricants in industrial applications. J. Syn. Lubr. 2006, 18, 301–325.CrossRefGoogle Scholar
  18. 18.
    Lappin, G. R.; Sauer, J. D. in Alpha olefin application handbook, CRC Press, Marcel Dekker, New York, 1989, Vol. 37.Google Scholar
  19. 19.
    Johnson, L. K.; Killian, C. M.; Brookhart, M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc. 1995, 117, 6414–6415.CrossRefGoogle Scholar
  20. 20.
    Ittel, S. D.; Johnson, L. K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 2000, 100, 1169–1204.CrossRefGoogle Scholar
  21. 21.
    Mecking, S. Olefin polymerization by late transition metal complexes—a root of Ziegler catalysts gains new ground. Angew. Chem. Int. Ed. 2001, 40, 534–540.CrossRefGoogle Scholar
  22. 22.
    Guan, Z. Chain walking: A new strategy to control polymer topology. Science 1999, 283, 2059–2062.CrossRefGoogle Scholar
  23. 23.
    Camacho, D. H.; Guan, Z. Designing late-transition metal catalysts for olefin insertion polymerization and copolymerization. Chem. Commun. 2010, 46, 7879–7893.CrossRefGoogle Scholar
  24. 24.
    Liu, F. S.; Hu, H. B.; Xu, Y.; Guo, L. H.; Zai, S. B.; Song, K. M.; Gao, H. Y.; Zhang, L.; Zhu, F. M.; Wu, Q. Thermostable α-diimine nickel(II) catalyst for ethylene polymerization: Effects of the substituted backbone structure on catalytic properties and branching structure of polyethylene. Macromolecules 2009, 42, 7789–7796.CrossRefGoogle Scholar
  25. 25.
    Gao, H.; Hu, H.; Zhu, F.; Wu, Q. A thermally robust amineimine nickel catalyst precursor for living polymerization of ethylene above room temperature. Chem. Commun. 2012, 48, 3312–3314.CrossRefGoogle Scholar
  26. 26.
    Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimine—nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 2017, 50, 2675–2682.CrossRefGoogle Scholar
  27. 27.
    Gao, J.; Yang, B.; Chen, C. Sterics versus electronics: Imine/phosphine-oxide-based nickel catalysts for ethylene polymerization and copolymerization. J. Catal. 2019, 369, 233–238.CrossRefGoogle Scholar
  28. 28.
    Dai, S.; Chen, C. Palladium-catalyzed direct synthesis of various branched, carboxylic acid-functionalized polyolefins: Characterization, derivatization, and properties. Macromolecules 2018, 51, 6818–6824.CrossRefGoogle Scholar
  29. 29.
    Na, Y.; Dai, S.; Chen, C. Direct synthesis of polar-functionalized linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE). Macromolecules 2018, 51, 4040–4048.CrossRefGoogle Scholar
  30. 30.
    Fang, J.; Sui, X.; Li, Y.; Chen, C. Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization. Polym. Chem. 2018, 9, 4143–4149.CrossRefGoogle Scholar
  31. 31.
    Zhou, S.; Chen, C. Synthesis of silicon-functionalized polyolefins by subsequent cobalt-catalyzed dehydrogenative silylation and nickel-catalyzed copolymerization. Sci. Bull. 2018, 63, 441–445.CrossRefGoogle Scholar
  32. 32.
    Wang, F. Z.; Tian, S. S.; Li, R. P.; Li, W. M.; Chen, C. L. Ligand steric effects on naphthyl-α-diimine nickel catalyzed α-olefin polymerization. Chinese J. Polym. Sci. 2018, 36, 157–162.CrossRefGoogle Scholar
  33. 33.
    Möhring, V. M.; Fink, G. Novel polymerization of α-olefins with the catalyst system nickel/aminobis(imino)phosphorane. Angew. Chem. Int. Ed. 1985, 24, 1001–1003.CrossRefGoogle Scholar
  34. 34.
    Schubbe, R.; Angermund, K.; Fink, G.; Goddard, R. Structure of the active species and the declaration of the migration mechanism of 2,ω-polymerisation of α-olefins. Macromol. Chem. Phys. 1995, 196, 467–478.CrossRefGoogle Scholar
  35. 35.
    Killian, C. M.; Tempel, D. J.; Johnson, L. K.; Brookhart, M. Living polymerization of α-olefins using NiII-α-diimine catalysts. Synthesis of new block polymers based on α-olefins. J. Am. Chem. Soc. 1996, 118, 11664–11665.CrossRefGoogle Scholar
  36. 36.
    Gottfried, A. C.; Brookhart, M. Living and block copolymerization of ethylene and α-olefins using palladium(II)-α-diimine catalysts. Macromolecules 2003, 36, 3085–3100.CrossRefGoogle Scholar
  37. 37.
    McCord, E. F.; McLain, S. J.; Nelson, L. T. J.; Ittel, S. D.; Tempel, D.; Killian, C. M.; Johnson, L. K.; Brookhart, M. 13C NMR analysis of α-olefin enchainment in poly(α-olefins) produced with nickel and palladium α-diimine catalysts. Macromolecules 2007, 40, 410–420.CrossRefGoogle Scholar
  38. 38.
    Subramanyam, U.; Rajamohanan, P. R.; Sivaram, S. A study of the structure of poly(hexene-1) prepared by nickel(α-diimine)/MAO catalyst using high resolution NMR spectroscopy. Polymer 2004, 45, 4063–4076.CrossRefGoogle Scholar
  39. 39.
    O’Connor, K. S.; Lamb, J. R.; Vaidya, T.; Keresztes, I.; Klimovica, K.; LaPointe, A. M.; Daugulis, O.; Coates, G. W. Understanding the insertion pathways and chain walking mechanisms of α-diimine nickel catalysts for α-olefin polymerization: A 13C NMR spectroscopic investigation. Macromolecules 2017, 50, 7010–7027.CrossRefGoogle Scholar
  40. 40.
    Merna, J.; Cihlar, J.; Kucera, M.; Deffieux, A.; Cramail, H. Polymerization of hex-1-ene initiated by diimine complexes of nickel and palladium. Eur. Polym. J. 2005, 41, 303–312.CrossRefGoogle Scholar
  41. 41.
    Subramanyam, U.; Sivaram, S. Kinetics of hexene-1 polymerization using [(N,N-diisopropylbenzene)-2,3-(1,8-napthyl)-1,4- diazabutadiene] dibromonickel/methylaluminoxane catalyst system. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1093–1100.CrossRefGoogle Scholar
  42. 42.
    Peruch, F.; Cramail, H.; Deffieux, A. Kinetic and UV-visible spectroscopic studies of hex-1-ene polymerization initiated by an α-diimine-[N,N] nickel dibromide/MAO catalytic system. Macromolecules 1999, 32, 7977–7983.CrossRefGoogle Scholar
  43. 43.
    Cherian, A. E.; Rose, J. M.; Lobkovsky, E. B.; Coates, G. W. A C2-symmetric, living α-diimine Ni(II) catalyst: Regioblock copolymers from propylene. J. Am. Chem. Soc. 2005, 127, 13770–13771.CrossRefGoogle Scholar
  44. 44.
    Rose, J. M.; Cherian, A. E.; Coates, G. W. Living polymerization of α-olefins with an α-diimine Ni(II) catalyst: Formation of well-defined ethylene-propylene copolymers through controlled chain-walking. J. Am. Chem. Soc. 2006, 128, 4186–4187.CrossRefGoogle Scholar
  45. 45.
    Azoulay, J. D.; Schneider, Y.; Galland, G. B.; Bazan, G. C. Living polymerization of ethylene and α-olefins using a nickel α-keto-β-diimine initiator. Chem. Commun. 2009, 6177–6179.Google Scholar
  46. 46.
    Azoulay, J. D.; Bazan, G. C.; Galland, G. B. Microstructural characterization of poly(1-hexene) obtained using a nickel α-keto-β-diimine initiator. Macromolecules 2010, 43, 2794–2800.CrossRefGoogle Scholar
  47. 47.
    Azoulay, J. D.; Gao, H. Y.; Koretz, Z. A.; Kehr, G.; Erker, G.; Shimizu, F.; Galland, G. B.; Bazan, G. C. Propylene polymerization with α-keto-β-diimine initiators proceeds via enantiomorphic site control. Macromolecules 2012, 45, 4487–4493.CrossRefGoogle Scholar
  48. 48.
    Vaidya, T.; Klimovica, K.; LaPointe, A. M.; Keresztes, I.; Lobkovsky, E. B.; Daugulis, O.; Coates, G. W. Secondary alkene insertion and precision chain-walking: A new route to semicrystalline “polyethylene” from α-olefins by combining two rare catalytic events. J. Am. Chem. Soc. 2014, 136, 7213–7216.CrossRefGoogle Scholar
  49. 49.
    Vaccarello, D. N.; O’Connor, K. S.; Iacono, P.; Rose, J. M.; Cherian, A. E.; Coates, G. W. Synthesis of semicrystalline polyolefin materials: Precision methyl branching via stereoretentive chain walking. J. Am. Chem. Soc. 2018, 140, 6208–6211.CrossRefGoogle Scholar
  50. 50.
    Hu, H.; Gao, H.; Chen, D.; Li, G.; Tan, Y.; Liang, G.; Zhu, F.; Wu, Q. Ligand-directed regioselectivity in amine-imine nickelcatalyzed 1-hexene polymerization. ACS Catal. 2015, 5, 122–128.CrossRefGoogle Scholar
  51. 51.
    Liu, J.; Chen, D.; Wu, H.; Xiao, Z.; Gao, H.; Zhu, F.; Wu, Q. Polymerization of α-olefins using a camphyl α-diimine nickel catalyst at elevated temperature. Macromolecules 2014, 47, 3325–3331.CrossRefGoogle Scholar
  52. 52.
    Liu, F.; Gao, H.; Hu, Z.; Hu, H.; Zhu, F.; Wu, Q. Poly(1-hexene) with long methylene sequences and controlled branches obtained by a thermostable α-diimine nickel catalyst with bulky camphyl backbone. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3859–3866.CrossRefGoogle Scholar
  53. 53.
    Guo, L.; Gao, H.; Guan, Q.; Hu, H.; Deng, J.; Liu, J.; Liu, F.; Wu, Q. Substituent effects of the backbone in α-diimine palla-53 dium catalysts on homo- and copolymerization of ethylene with methyl acrylate. Organometallics 2012, 31, 6054–6062.CrossRefGoogle Scholar
  54. 54.
    Zai, S.; Liu, F.; Gao, H.; Li, C.; Zhou, G.; Cheng, S.; Guo, L.; Zhang, L.; Zhu, F.; Wu, Q. Longstanding living polymerization of ethylene: Substituent effect on bridging carbon of 2-pyridinemethanamine nickel catalysts. Chem. Commun. 2010, 46, 4321–4323.CrossRefGoogle Scholar
  55. 55.
    Zai, S.; Gao, H.; Huang, Z.; Hu, H.; Wu, H.; Wu, Q. Substituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerization. ACS Catal. 2012, 2, 433–440.CrossRefGoogle Scholar
  56. 56.
    Hu, H.; Zhang, L.; Gao, H.; Zhu, F.; Wu, Q. Design of thermally stable amine-imine nickel catalyst precursors for living polymerization of ethylene: Effect of ligand substituents on catalytic behavior and polymer properties. Chem. Eur. J. 2014, 20, 3225–3233.CrossRefGoogle Scholar
  57. 57.
    Hu, H. B.; Chen, D. R.; Gao, H. Y.; Zhong, L.; Wu, Q. Amineimine palladium catalysts for living polymerization of ethylene and copolymerization of ethylene with methyl acrylate: Incorporation of acrylate units into the main chain and branch end. Polym. Chem. 2016, 7, 529–537.CrossRefGoogle Scholar
  58. 58.
    Liao, H.; Zhong, L.; Xiao, Z. F.; Zheng, T.; Gao, H. Y.; Wu, Q. α-Diamine nickel catalysts with nonplanar chelate rings for ethylene polymerization. Chem. Eur. J. 2016, 22, 14048–14055.CrossRefGoogle Scholar
  59. 59.
    Zhong, S.; Tan, Y.; Zhong, L.; Gao, J.; Liao, H.; Jiang, L.; Gao, H.; Wu, Q. Precision synthesis of ethylene and polar monomer copolymers by palladium-catalyzed living coordination copolymerization. Macromolecules 2017, 50, 5661–5669.CrossRefGoogle Scholar
  60. 60.
    Pei, L.; Liu, F.; Liao, H.; Gao, J.; Zhong, L.; Gao, H.; Wu, Q. Synthesis of polyethylenes with controlled branching with α-diimine nickel catalysts and revisiting formation of long-chain branching. ACS Catal. 2018, 8, 1104–1113.CrossRefGoogle Scholar
  61. 61.
    Zheng, T.; Liao, H.; Gao, J.; Zhong, L.; Gao, H.; Wu, Q. Synthesis and characterization of α-diamine palladium complexes and insight into hybridization effects of nitrogen donor atoms on norbornene (co)polymerizations. Polym. Chem. 2018, 9, 3088–3097.CrossRefGoogle Scholar
  62. 62.
    Pappalardo, D.; Mazzeo, M.; Pellecchia, C. Polymerization of ethylene with nickel α-diimine catalysts. Macromol. Rapid Commun. 1997, 18, 1017–1023.CrossRefGoogle Scholar
  63. 63.
    Pellecchia, C.; Zambelli, A. Syndiotactic-specific polymerization of propene with a Ni-based catalyst. Macromol. Rapid Commun. 1996, 17, 333–338.CrossRefGoogle Scholar
  64. 64.
    Pellecchia, C.; Zambelli, A.; Oliva, L.; Pappalardo, D. Syndiotactic-specific polymerization of propene with nickel-based catalysts. 2. Regiochemistry and stereochemistry of the initiation steps. Macromolecules 1996, 29, 6990–6993.CrossRefGoogle Scholar
  65. 65.
    Dai, S.; Sui, X.; Chen, C. Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. Chem. Commun. 2016, 52, 9113–9116.CrossRefGoogle Scholar
  66. 66.
    Merna, J.; Hošt’álek, Z.; Peleška, J.; Roda, J. Living/controlled olefin polymerization initiated by nickel diimine complexes: The effect of ligand ortho substituent bulkiness. Polymer 2009, 50, 5016–5023.CrossRefGoogle Scholar
  67. 67.
    Wang, F.; Tanaka, R.; Cai, Z.; Nakayama, Y.; Shiono, T. Synthesis of highly branched polyolefins using phenyl substituted α-diimine Ni(II) catalysts. Polymers 2016, 8, 160–175.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Heng Liao
    • 1
  • Jie Gao
    • 1
  • Liu Zhong
    • 1
  • Hai-Yang Gao
    • 1
    Email author
  • Qing Wu
    • 1
  1. 1.School of Materials Science and Engineering, PCFM Lab, GD HPPC LabSun Yat-sen UniversityGuangzhouChina

Personalised recommendations