Chinese Journal of Polymer Science

, Volume 37, Issue 7, pp 693–699 | Cite as

Direct Comparison of Crystal Nucleation Activity of PCL on Patterned Substrates

  • Jian Hu
  • Rui Xin
  • Chun-Yue Hou
  • Shou-Ke YanEmail author
  • Ji-Chun Liu


A sample containing different regions with poly(ε-caprolactone) (PCL), oriented polyethylene (PE), and oriented isotactic polypropylene (iPP) films in contact with glass slide has been prepared to be observed in the same view field in an optical microscope and the crystallization of PCL in different regions during cooling from 80 °C down to room temperature at a rate of 1 °C·min−1 was studied. The results showed that the crystallization of PCL started first at the PE surface and then at the iPP surface, while its bulk crystallization occured much later. This indicates that though both PE and iPP are active in nucleating PCL, the nucleation ability of PE is stronger than that of iPP. This was due to a better lattice matching between PCL and PE than that between PCL and iPP. Moreover, since lattice matching existed between every (hk0) lattice planes of both PCL and PE but only between the (100)PCL and (010)iPP lattice planes, the uniaxial orientation feature of the used PE and iPP films resulted in the existence of much more active nucleation sites of PCL on PE than on iPP. This led to the fact that the nucleation density of PCL at PE surface was so high that the crystallization of PCL at PE surface took place in a way like the film developing process with PCL microcrystallites happened everywhere with crystallization proceeding simultaneously. On the other hand, even though iPP also enhanced the nucleation density of PCL evidently, the crystallization of PCL at iPP surface included still a nucleation and crystal growth processes similar to that of its bulk crystallization.


Poly(ε-caprolactone) Polypropylene Polyethylene Epitaxy Heterogeneous nucleation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, J.; Zhang, Z.; Xu, H.; Chen, J.; Ran, R.; Li, Z. Highly enhanced crystallization kinetics of poly(L-lactic acid) by poly(ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 2015, 48, 4891–4900.CrossRefGoogle Scholar
  2. 2.
    Zhong, G.; Li, Z.; Li, L.; Shen, K. Crystallization of oriented isotactic polypropylene (iPP) in the presence of in situ poly(ethylene terephthalate) (PET) microfibrils. Polymer 2008, 49, 4271–4278.CrossRefGoogle Scholar
  3. 3.
    Chen, L.; Zhou, W.; Su, F.; Zhang, W.; Chen, P.; Ji, Y.; Li, L. Filler-induced heterogeneous distribution of stretch-induced crystallization in natural rubber: An in-situ synchrotron-radiation micro-focused scanning X-ray diffraction study. Polymer 2017, 115, 217–223.CrossRefGoogle Scholar
  4. 4.
    Kar, G. P.; Bose, S. Nucleation barrier, growth kinetics in ternary polymer blend filled with preferentially distributed carbon nanotubes. Polymer 2017, 128, 229–241.CrossRefGoogle Scholar
  5. 5.
    Deng, H.; Xie, N.; Li, W.; Qiu, F.; Shi, A. C. Perfectly ordered patterns via corner-induced heterogeneous nucleation of selfassembling block copolymers confined in hexagonal potential wells. Macromolecules 2015, 48, 4174–4182.CrossRefGoogle Scholar
  6. 6.
    Flieger, A. K.; Schulz, M.; Thurn-Albrecht, T. Interface-induced crystallization of polycaprolactone on graphite via firstorder prewetting of the crystalline phase. Macromolecules 2018, 51, 189–194.CrossRefGoogle Scholar
  7. 7.
    Chatterjee, A. M.; Price, F. P.; Newmann, S. Heterogeneous nucleation of crystallization of high polymers from the melt. I. Substrate-induced morphologies. J. Polym. Sci., Part B: Polym. Phys. 1975, 13, 2369–2383.Google Scholar
  8. 8.
    Chatterjee, A. M.; Price, F. P.; Newmann, S. Heterogeneous nucleation of crystallization of high polymers from the melt. II. Aspects of transcrystallinity and nucleation density. J. Polym. Sci., Part B: Polym. Phys. 1975, 13, 2385–2390.Google Scholar
  9. 9.
    Chatterjee, A. M.; Price, F. P.; Newmann, S. Heterogeneous nucleation of crystallization of high polymers from the melt. III. Nucleation kinetics and interfacial energies. J. Polym. Sci., Part B: Polym. Phys. 1975, 13, 2391–2400.Google Scholar
  10. 10.
    Fillon, B.; Lotz, B.; Thierry, A.; Wittmann, J. C. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (a phase). J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 1395–1405.CrossRefGoogle Scholar
  11. 11.
    Fillon, B.; Wittmann, J. C.; Lotz, B.; Thierry, A. Self-nucleation and enhanced nucleation of polymers. Definition of a con-12venient calorimetric "efficiency scale" and evaluation of nucleating additives in isotactic polypropylene (a phase). J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 1383–1393.CrossRefGoogle Scholar
  12. 12.
    Petermann, J.; Gohil, R. M. A new method for the preparation of high modulus thermoplastic films. J. Mater. Sci. 1979, 14, 2260–2264.CrossRefGoogle Scholar
  13. 13.
    Gohil, R.M.; Miles, M. J.; Petermann, J. On the molecular mechanism of the crystal transformation (tetragonai-hexagonai) in polybutene-1. J. Macromol. Sci.-Phys. 1982, B21, 189–201.CrossRefGoogle Scholar
  14. 14.
    Guan, G.; Zhang, J.; Sun, Li, H.; Yan, S.; Lotz, B. Oriented overgrowths of poly(L-lactide) on oriented isotactic polypropylene: A sequence of soft and hard epitaxies. Macromol. Rapid Commun. 2018, 39, 1800353.CrossRefGoogle Scholar
  15. 15.
    Guo, Z.; Li, S.; Liu, X.; Zhang, J.; Li, H.; Sun, X.; Ren, Z.; Yan, S. Epitaxial crystallization of isotactic poly(methyl methacrylate) from different states on highly oriented polyethylene thin film. J. Phys. Chem. B 2018, 122, 9425–9433.CrossRefGoogle Scholar
  16. 16.
    Ma, L.; Zhou, Z.; Zhang, J.; Sun, X.; Li, H.; Zhang, J.; Yan, S. Temperature-dependent recrystallization morphologies of carbon- coated isotactic polypropylene highly oriented thin films. Macromolecules 2017, 50, 3582–3589.CrossRefGoogle Scholar
  17. 17.
    Zhang, J.; Ruan, J.; Yan, S. Epitaxy of PLLA/PCL blends on highly oriented polyethylene substrate. Acta Polymerica Sinica (in Chinese) 2017, 9, 1524–1529.Google Scholar
  18. 18.
    Ma, L.; Zhang, J.; Memon, M. A.; Sun, X.; Li, H; Yan, S. Melt recrystallization behavior of carbon coated melt-drawn oriented isotactic polypropylene thin films. Polym. Chem. 2015, 6, 7524–7532.CrossRefGoogle Scholar
  19. 19.
    Zhou, H.; Yan, S. Can the structures of semicrystalline polymers be controlled using interfacial crystallographic interactions? Macromol. Chem. Phys. 2013, 214, 639–653.CrossRefGoogle Scholar
  20. 20.
    Wu, J.; Zhou, H.; Liu, Q.; Yan, S. Application of electron diffraction in the structure characterization of polymer crystals. Chinese J. Polym. Sci. 2013, 31, 841–852.CrossRefGoogle Scholar
  21. 21.
    Yan, C.; Guo, L.; Chang, H.; Yan, S. Induced crystallization of poly(ethylene adipate) by highly oriented polyethylene. Chinese J. Polym. Sci. 2013, 31, 1173–1182.CrossRefGoogle Scholar
  22. 22.
    Li, H.; Yan, S. Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules 2011, 44, 417–428.CrossRefGoogle Scholar
  23. 23.
    An, Y.; Jiang, S.; Yan, S.; Sun, J. R.; Chen, X. Crystallization behavior of polylactide on highly oriented polyethylene thin films. Chinese J. Polym. Sci. 2011, 29, 513–519.CrossRefGoogle Scholar
  24. 24.
    Chang, H.; Guo, Q.; Shen, D.; Li, L.; Qiu, Z.; Wang, F.; Yan, S. A study on the oriented recrystallization of carbon-coated pre-oriented ultrathin polyethylene films. J. Phys. Chem. B 2010, 114, 13104–13109.CrossRefGoogle Scholar
  25. 25.
    Yan, S. Origin of oriented recrystallization of carbon coated pre-oriented ultra-thin polymer films. Macromolecules 2003, 36, 339–345.CrossRefGoogle Scholar
  26. 26.
    Yan, S.; Petermann, J.; Yang, D. Effects of lamellar thicknesses on the epitaxial crystallization of HDPE on the iPP substrate films. Polym. Bull. 1997, 38, 87–94.CrossRefGoogle Scholar
  27. 27.
    Yang, D. C.; Thomas, E. L. An electron microscopy and X-ray diffraction study of the microstructures of melt-drawn polyethylene films. J. Mater. Sci. 1984, 19, 2098–2110.CrossRefGoogle Scholar
  28. 28.
    Bu, X.; Li, H.; Yan, S. The propagation of crystal orientation in poly(e-caprolactone)/poly(vinyl chloride) blend film after removal of induction layer. Colloid Polym. Sci. 2017, 295, 1635–1642.CrossRefGoogle Scholar
  29. 29.
    Tao, X.; Yan, S.; Yang D. Epitaxial crystallization of poly(e- caprolactone) on highly oriented isotactic polypropylene. Chinese Chem. Lett. 1993, 4, 1093–1096.Google Scholar
  30. 30.
    Liu, J.; Li, H.; Yan, S.; Xiao, Q.; Petermann, J. Epitaxial- and trans-crystallization of PCL on the highly oriented PE substrates. Colloid Polym. Sci. 2003, 281, 601–607.CrossRefGoogle Scholar
  31. 31.
    Chang, H.; Zhang, J.; Li, L.; Wang, Z.; Yang, C.; Takahashi, I.; Ozaki, Y.; Yan, S. A study on the epitaxial ordering process of the polycarprolactone on the highly oriented polyethylene substrate. Macromolecules 2010, 43, 362–366.CrossRefGoogle Scholar
  32. 32.
    Yan, C.; Li, H.; Zhang, J.; Ozaki, Y.; Shen, D.; Yan, D.; Shi, A. C.; Yan, S. Surface induced anisotropic chain ordering of polycarprolactone on oriented polyethylene substrate: Epitaxy and soft epitaxy. Macromolecules 2006, 39, 8041–8048.CrossRefGoogle Scholar
  33. 33.
    Wittmann, J. C.; Lotz, B. Epitaxial crystallization of aliphatic polyesters on trioxane and various aromatic hydrocarbons. J. Polym. Sci., Part B: Polym. Phys. 1981, 19, 1853–1864.Google Scholar
  34. 34.
    Wittmann, J. C.; Lotz, B. Epitaxial crystallization of polyethylene on organic substrates: A reappraisal of the mode of action of selected nucleating agents. J. Polym. Sci., Part B: Polym. Phys. 1981, 19, 1837–1851.Google Scholar
  35. 35.
    Wittmann, J. C.; Lotz, B. Epitaxial crystallization of polymers on organic and polymeric substrate. Prog. Polym. Sci. 1990, 15, 909–948.CrossRefGoogle Scholar
  36. 36.
    Hu, H.; Dorset, D. L. Crystal structure of poly(e-caprolactone). Macromolecules 1990, 23, 4604–4607.CrossRefGoogle Scholar
  37. 37.
    Bittiger, H.; Marchessault, R. H.; Niegisch, W. O. Crystal structure of poly-e-caprolactone. Acta Cryst. 1970, B26, 1923–1927.CrossRefGoogle Scholar
  38. 38.
    Chatani, Y.; Okita, Y.; Tadokoro, H.; Yamashita, Y. Structural studies of polyesters. III. Crystal structure of poly-e-caprolactone. Polym. J. 1970, 1, 555–562.CrossRefGoogle Scholar
  39. 39.
    Núñeza, E.; Ferrandoa, C.; Malmströma, E.; Claessona, H.; Wernerb, P. E.; Gedde, U. W. Crystal structure, melting behaviour and equilibrium melting point of star polyesters with crystallisable poly(e-caprolactone) arms. Polymer 2004, 45, 5251–5263.CrossRefGoogle Scholar
  40. 40.
    Bunn, C. W. The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the >CH2 group. Trans. Faraday Soc. 1939, 35, 482–491.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jian Hu
    • 1
  • Rui Xin
    • 1
  • Chun-Yue Hou
    • 1
  • Shou-Ke Yan
    • 1
    Email author
  • Ji-Chun Liu
    • 2
  1. 1.Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plasticsQingdao University of Science & TechnologyQingdaoChina
  2. 2.College of Chemical Engineering and Pharmaceutics, Key Laboratory of Polymer Science and NanotechonologyHenan University of Science and TechnologyLuoyangChina

Personalised recommendations