Advertisement

Recent Progress in AIE-active Polymers

  • Yu Bing Hu
  • Jacky W. Y. LamEmail author
  • Ben Zhong TangEmail author
Review

Abstract

The demand for highly efficient solid-state luminophores is continuously growing due to their potential applications in optoelectrical devices, chemosensors, and biological applications. The discovery of luminogens with aggregation-induced emission (AIE) by Tang et al. in 2001 provides a good reponse to this demand. Among the exploited AIE luminogens, AIE-active polymers possess many advantages such as simple synthesis, convenient structrue modifications, and good processability, which offer an extensive platform for scientists and engineers. Herein, the design principles and latest synthetic advancement of AIE-active polymers are summarized, including click polymerization and multicomponent polymerization. Non-conjugated heteroatom-rich polymers were in situ generated and demonstated non-conventional clusteroluminoscence. Advanced applications including fluorescent sensors, stimuli-responsive materials, biological applications, circularly polarized luminescence, and electroluminescence are then introduced in detail. AIE-active polymers display the signal-amplification effect for sensitive and selective response to chemo/bioanalytes or stimuli and enhanced photosensitization effect for cancer theranostics. Retrospecting the expansion of this field can further strengthen our belief that AIE-active polymers are promising for conceptual innovation and technological breakthroughs in the near future.

Keywords

Aggregation-induced emission Polymer synthesis High-tech application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21788102, 21490570, and 21490574), the Research Grant Council of Hong Kong (Nos. 16308116, 16303815, C2014-15G, C6009-17G, and AHKUST605/ 16), the Science and Technology Plan of Shenzhen (Nos. JCYJ20160229205601482, JCY20170307173739739, and JCYJ20170818113602462), and the Innovation and Technology Commission (Nos. ITC-CNERC149C01 and ITS/254/17).

References

  1. 1.
    Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation–induced emission of 1–methyl–1,2,3,4,5–pentaphenylsilole. Chem. Commun. 2001, 1740–1741.Google Scholar
  2. 2.
    Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation–induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.Google Scholar
  3. 3.
    Hu, R.; Kang, Y.; Tang, B. Z. Recent advances in AIE polymers. Pofym. J. 2016, 48, 359.Google Scholar
  4. 4.
    Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation–induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.Google Scholar
  5. 5.
    Qiu, Z.; Liu, X.; Lam, J. W.; Tang, B. Z. The marriage of aggregation–induced emission with polymer science. Macromol. Rapid Commun. 2018, 1800568.Google Scholar
  6. 6.
    Chen, J.; Xie, Z.; Lam, J. W.; Law, C. C.; Tang, B. Z. Silolecontaining polyacetylenes synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation.. Macromolecules 2003, 36, 1108–1117.Google Scholar
  7. 7.
    Hu, R.; Leung, N. L.; Tang, B. Z. AIE macromolecules: Syntheses, structures and functionalities. Chem. Soc. Rev. 2014, 43, 4494–4562.Google Scholar
  8. 8.
    Yang, D. J.; Lin, L. Y.; Huang, P. C.; Gao, J. Y.; Hong, J. L. Tetraphenylthiophene–terminated poly(acrylic acid) as pH–and bio–sensors by the aggregation–induced emission property. React. Funct. Polym. 2016, 108, 47–53.Google Scholar
  9. 9.
    Jiang, R.; Liu, M.; Huang, Q.; Huang, H.; Wan, Q.; Wen, Y.; Tian, J.; Cao, Q. Y.; Zhang, X.; Wei, Y. Fabrication of multifunctional fluorescent organic nanoparticles with AIE feature through photo–initiated RAFT polymerization. Polym. Chem. 2017, 8, 7390–7399.Google Scholar
  10. 10.
    Wang, Z.; Yong, T. Y.; Wan, J.; Li, Z. H.; Zhao, H.; Zhao, Y.; Gan, L.; Yang, X. L.; Xu, H. B.; Zhang, C. Temperature–sensitive fluorescent organic nanoparticles with aggregation–induced emission for long–term cellular tracing. ACS Appl. Mater. Interfaces 2015, 7, 3420–3425.Google Scholar
  11. 11.
    Guan, X.; Zhang, D.; Jia, T.; Zhang, Y.; Meng, L.; Jin, Q.; Ma, H.; Lu, D.; Lai, S.; Lei, Z. Intriguingly tuning the fluorescence of AIEgen using responsive polyelectrolyte microspheres. RSC Adv. 2016, 6, 107622–107627.Google Scholar
  12. 12.
    Wan, Q.; Jiang, R.; Mao, L.; Xu, D.; Zeng, G.; Shi, Y.; Deng, F.; Liu, M.; Zhang, X.; Wei, Y. A powerful “one–pot” tool for fabrication of AIE–active luminescent organic nanoparticles through the combination of RAFT polymerization and multicomponent reactions. Mater. Chem. Front. 2017, 1, 1051–1058.Google Scholar
  13. 13.
    Chen, T.; Yin, H.; Chen, Z. Q.; Zhang, G. F.; Xie, N. H.; Li, C.; Gong, W. L.; Tang, B. Z.; Zhu, M. Q. Monodisperse AIE–active conjugated polymer nanoparticles via dispersion polymerization using geminal cross–coupling of 1,1–dibromoolefins. Small 2016, 12, 6547–6552.Google Scholar
  14. 14.
    Chen, M.; Li, L.; Wu, H.; Pan, L.; Li, S.; He, B.; Zhang, H.; Sun, J. Z.; Qin, A.; Tang, B. Z. Unveiling the different emission behavior of polytriazoles constructed from pyrazine–based AIE monomers by click polymerization. ACS Appl. Mater. Interfaces 2018, 10,12181–12188.Google Scholar
  15. 15.
    He, B.; Su, H.; Bai, T.; Wu, Y.; Li, S.; Gao, M.; Hu, R.; Zhao, Z.; Qin, A.; Ling, J. Spontaneous amino–yne click polymerization: A powerful tool toward regio–and stereospecific poly(–aminoacrylate)s. J. Am. Chem. Soc. 2017, 139, 5437–5443.Google Scholar
  16. 16.
    Tian, T.; Hu, R.; Tang, B. Z. Room temperature one–step conversion from elemental sulfur to functional polythioureas through catalyst–free multicomponent polymerizations. J. Am. Chem. Soc. 2018, 140, 6156–6163.Google Scholar
  17. 17.
    Liu, Y.; Roose, J.; Lam, J. W.; Tang, B. Z. Multicomponent polycoupling of internal diynes, aryl diiodides, and boronic acids to functional poly(tetraarylethene)s. Macromolecules 2015, 48, 8098–8107.Google Scholar
  18. 18.
    Qiu, Z.; Han, T.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Polhttps yarylcyanation of diyne: A one–pot three–component convenient route for in situ generation of polymers with AIE characteristics. Macromolecules 2016, 49, 8888–8898.Google Scholar
  19. 19.
    Zhao, E.; Lam, J. W.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X.; Hao, J.; Tang, B. Z. Poly[(maleic anhydride)–alt–(vinyl acetate)]: A pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules 2014, 48, 64–71.Google Scholar
  20. 20.
    Wang, R. B.; Yuan, W. Z.; Zhu, X. Y. Aggregation–induced emission of non–conjugated poly(amido amine)s: Discovering, luminescent mechanism understanding and bioapplication. Chinese J. Polym. Sci. 2015, 33, 680–687.Google Scholar
  21. 21.
    Han, T.; Deng, H.; Qiu, Z.; Zhao, Z.; Zhang, H.; Zou, H.; Leung, N. L.; Shan, G.; Elsegood, M. R.; Lam, J. W. Facile multicomponent polymerizations toward unconventional luminescent polymers with readily openable small heterocycles. J. Am. Chem. Soc. 2018, 140, 5588–5598.Google Scholar
  22. 22.
    Sun, X. L.; Liu, D. M.; Tian, D.; Zhang, X. Y.; Wu, W.; Wan, W. M. The introduction of the Barbier reaction into polymer chemistry. Nat. Commun. 2017, 8, 1210.Google Scholar
  23. 23.
    Chen, Y.; Han, H.; Tong, H.; Chen, T.; Wang, H.; Ji, J.; Jin, Q. Zwitterionic phosphorylcholine–TPE conjugate for pH–responsive drug delivery and AIE active imaging. ACS Appl. Mater. Interfaces 2016, 8, 21185–21192.Google Scholar
  24. 24.
    Cao, Q. Y.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Microwave–assisted multicomponent reactions for rapid synthesis of AIE–active fluorescent polymeric nanoparticles by post–polymerization method. Mater. Sci. Eng. C 2017, 80, 578–583.Google Scholar
  25. 25.
    Wan, Q.; Liu, M.; Xu, D.; Huang, H.; Mao, L.; Zeng, G.; Deng, F.; Zhang, X.; Wei, Y. Facile fabrication of amphiphilic AIE active glucan via formation of dynamic bonds: Self assembly, stimuli responsiveness and biological imaging. J. Mater. Chem. B 2016, 4, 4033–4039.Google Scholar
  26. 26.
    Wan, Q.; Liu, M.; Xu, D.; Mao, L.; Tian, J.; Huang, H.; Gao, P.; Deng, F.; Zhang, X.; Wei, Y. Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a “one–pot” multicomponent reaction. Carbohydr. Polym. 2016, 152, 189–195.Google Scholar
  27. 27.
    Huang, Z. F.; Zhang, X. Q.; Zhang, X. Y.; Yang, B.; Wang, K.; Wang, S. Q.; Yuan, J. Y.; Tao, L.; Wei, Y. Synthesis of starchbased amphiphilic fluorescent nanoparticles and their application in biological imaging. J. Nanosci. Nanotechnol. 2018, 18, 2345–2351.Google Scholar
  28. 28.
    Wan, Q.; Jiang, R.; Guo, L.; Yu, S.; Liu, M.; Tian, J.; Liu, G.; Deng, F.; Zhang, X.; Wei, Y. Novel strategy toward AIE–active fluorescent polymeric nanoparticles from polysaccharides: Preparation and cell imaging. ACS Sustain. Chem. Eng. 2017, 5, 9955–9964.Google Scholar
  29. 29.
    Peng, H. Q.; Zheng, X.; Han, T.; Kwok, R. T.; Lam, J. W.; Huang, X.; Tang, B. Z. Dramatic differences in aggregation–induced emission and supramolecular polymerizability of tetraphenylethene–based stereoisomers. J. Am. Chem. Soc. 2017, 139, 10150–10156.Google Scholar
  30. 30.
    Bai, W.; Wang, Z.; Tong, J.; Mei, J.; Qin, A.; Sun, J. Z.; Tang, B. Z. A self–assembly induced emission system constructed by the host–guest interaction of AIE–active building blocks. Chem. Commun. 2015, 51, 1089–1091.Google Scholar
  31. 31.
    Tao, D. D.; Wang, Q.; Yan, X. S.; Chen, N.; Li, Z.; Jiang, Y. B. Ag+ coordination polymers of a chiral thiol ligand bearing an AIE fluorophore. Chem. Commun. 2017, 53,255–258.Google Scholar
  32. 32.
    Zhang, J.; Zhu, J.; Lu, C.; Gu, Z.; He, T.; Yang, A.; Qiu, H.; Zhang, M.; Yin, S. A hyperbranched fluorescent supramolecular polymer with aggregation induced emission (AIE) properties. Polym. Chem. 2016, 7, 4317–4321.Google Scholar
  33. 33.
    Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339–1386.Google Scholar
  34. 34.
    Wu, Y. W.; Qin, A. J.; Tang, B. Z. AIE–active polymers for explosive detection. Chinese J. Polym. Sci. 2017, 3 5,141–154.Google Scholar
  35. 35.
    Dong, W.; Wu, H.; Chen, M.; Shi, Y.; Sun, J.; Qin, A.; Tang, B. Z. Anionic conjugated polytriazole: direct preparation, aggregation–enhanced emission, and highly efficient Al3+ sensing. Polym. Chem. 2016, 7, 5835–5839.Google Scholar
  36. 36.
    Wan, H.; Gu, P.; Zhou, F.; Wang, H.; Jiang, J.; Chen, D.; Xu, Q.; Lu, J. M. Polyacrylic esters with “one–is–enough” effect and investigation of their AIEE behaviours and cyanide detection in aqueous solution. Polym. Chem. 2018, 9, 3893–3899.Google Scholar
  37. 37.
    Qian, Y.; Liu, H.; Tan, H.; Yang, Q.; Zhang, S.; Han, L.; Yi, X.; Huo, L.; Zhao, H.; Wu, Y. A novel water–soluble fluorescence probe with wash–free cellular imaging capacity based on AIE characteristics. Macromol. Rapid Commun. 2017, 38, 1600684.Google Scholar
  38. 38.
    Wei, G.; Jiang, Y.; Wang, F. A novel AIEE polymer sensor for detection of Hg2+ and Ag+ in aqueous solution. J. Photochem. Photobiol. A 2018, 358, 38–43.Google Scholar
  39. 39.
    Morishima, K.; Ishiwari, F.; Matsumura, S.; Fukushima, T.; Shibayama, M. Mesoscopic structural aspects of Ca2+–triggered polymer chain folding of a tetraphenylethene–appended poly(acrylic acid) in relation to its aggregation–induced emission behavior. Macromolecules 2017, 50, 5940–5945.Google Scholar
  40. 40.
    Yang, D.; Li, F.; Luo, Z.; Bao, B.; Hu, Y.; Weng, L.; Cheng, Y.; Wang, L. Conjugated polymer nanoparticles with aggregation induced emission characteristics for intracellular Fe3+ sensing. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1686–1693.Google Scholar
  41. 41.
    Guan, X.; Meng, L.; Jin, Q.; Lu, B.; Chen, Y.; Li, Z.; Wang, L.; Lai, S.; Lei, Z. A new thermo–, pH–and C?2–responsive fluorescent four–arm star polymer with aggregation–induced emission for long–term cellular tracing. Macromol. Mater. Eng. 2018, 1700553.Google Scholar
  42. 42.
    Wang, K.; Lu, H.; Liu, B.; Yang, J. Multi–stimuli–responsive fluorescence of AEE polyurethane films. Eur. Polym. J. 2018, 101,225–232.Google Scholar
  43. 43.
    Minei, P.; Pucci, A. Fluorescent vapochromism in synthetic polymers. Polym. Int. 2016, 5, 609–620.Google Scholar
  44. 44.
    Zhao, Y.; Zhu, W.; Ren, L.; Zhang, K. Aggregation–induced emission polymer nanoparticles with pH–responsive fluorescence. Polym. Chem. 2016, 7, 5386–5395.Google Scholar
  45. 45.
    Zhang, Z.; Bilalis, P.; Zhang, H.; Gnanou, Y.; Hadjichristidis, N. Core cross–linked multiarm star polymers with aggregationinduced emission and temperature responsive fluorescence characteristics. Macromolecules 2017, 50,4217–4226.Google Scholar
  46. 46.
    Wang, L.; Yang, L.; Li, L.; Cao, D. The synthesis and highly sensitive detection of water content in THF using a novel solvatochromic AIE polymer containing diketopyrrolopyrrole and triphenylamine. New J. Chem. 2016, 40, 6706–6713.Google Scholar
  47. 47.
    Liu, F.; Urban, M. W. Recent advances and challenges in designing stimuli–responsive polymers. Prog. Polym. Sci. 2010, 35, 3–23.Google Scholar
  48. 48.
    Chen, J. R.; Zhao, J.; Xu, B. J.; Yang, Z. Y.; Liu, S. W.; Xu, J. R.; Zhang, Y.; Wu, Y. C.; Lv, P. Y.; Chi, Z. G. An AEE–active polymer containing tetraphenylethene and 9,10–distyrylanthracene moieties with remarkable mechanochromism. Chinese J. Polym. Sci. 2017, 35, 282–292.Google Scholar
  49. 49.
    Li, T.; He, S.; Qu, J.; Wu, H.; Wu, S.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Thermoresponsive AIE polymers with finetuned response temperature. J. Mater. Chem. C 2016, 4, 2964–2970.Google Scholar
  50. 50.
    Singh, R.; Wu, H. Y.; Dwivedi, A. K.; Singh, A.; Lin, C. M.; Raghunath, P.; Lin, M. C.; Wu, T. K.; Wei, K. H.; Lin, H. C. Monomeric and aggregation emissions of tetraphenylethene in a photo–switchable polymer controlled by cyclization of diarylethene and solvent conditions. J. Mater. Chem. C 2017, 5, 9952–9962.Google Scholar
  51. 51.
    Zhan, R.; Pan, Y.; Manghnani, P. N.; Liu, B. AIE polymers: Synthesis, properties, and biological applications. Macromol. Biosci. 2017, 17, 1600433.Google Scholar
  52. 52.
    Yan, L.; Zhang, Y.; Xu, B.; Tian, W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8, 2471–2487.Google Scholar
  53. 53.
    Gao, M.; Tang, B. Z. Aggregation–induced emission probes for cancer theranostics. Drug Discovery Today 2017, 22, 1288–1294.Google Scholar
  54. 54.
    Yuan, Y.; Liu, B. Visualization of drug delivery processes using AIEgens. Chem. Sci. 2017, 8, 2537–2546.Google Scholar
  55. 55.
    Liang, J.; Liu, B. ROS–responsive drug delivery systems. Bioeng. Transl. Med. 2016, 1, 239–251.Google Scholar
  56. 56.
    Wu, W. High–performance conjugated polymer photosensitizers. Chem 2018, 4, 1762–1764.Google Scholar
  57. 57.
    Liu, S.; Zhang, H.; Li, Y.; Liu, J.; Du, L.; Chen, M.; Kwok, R.; Lam, J.; Phillips, D. L.; Tang, B. Z. Strategies to enhance the photosensitization: Polymerization and D/A even–odd effect. Angew. Chem. 2018, 130, 15409–15413.Google Scholar
  58. 58.
    Roose, J.; Tang, B. Z.; Wong, K. S. Circularly–polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small 2016, 12, 6495–6512.Google Scholar
  59. 59.
    Liu, Q.; Xia, Q.; Wang, S.; Li, B. S.; Tang, B. Z. In situ visualizable self–assembly, aggregation–induced emission and circularly polarized luminescence of tetraphenylethene and alaninebased chiral polytriazole. J. Mater. Chem. C 2018, 6, 4807–4816.Google Scholar
  60. 60.
    Kim, Y.; Kim, E.; Clavier, G.; Audebert, P. New tetrazinebased fluoroelectrochromic window; modulation of the fluorescence through applied potential. Chem. Commun. 2006, 34, 3612–3614.Google Scholar
  61. 61.
    Cheng, S. W.; Han, T.; Huang, T. Y.; Tang, B. Z.; Liou, G. S. High–performance electrofluorochromic devices based on aromatic polyamides with AIE–active tetraphenylethene and electro–active triphenylamine moieties. Polym. Chem. 2018, 9, 4364–4373.Google Scholar
  62. 62.
    Yang, L.; Zhang, Y.; Zhang, X.; Li, N.; Quan, Y.; Cheng, Y. Doping–free circularly polarized electroluminescence of AIEactive chiral binaphthyl–based polymers. Chem. Commun. 2018, 54, 9663–9666.Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.HKUST-Shenzhen Research InstituteShenzhenChina
  2. 2.Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHong KongChina
  3. 3.Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouChina

Personalised recommendations