Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer

  • Man-Man Fang
  • Jie Yang
  • Zhen LiEmail author


Room temperature phosphorescence (RTP) has drawn increasing attention for its great potential in practical applications. Polymers with large molecular weights and long chains tend to form coil, which can endow them with a high degree of possible rigidity and result in the much restricted non-radiative transition. Also, the intertwined structure of polymers could isolate the oxygen and humidity effectively, thus reducing the consumption of triplet excitons. In consideration of these points, organic polymers would be another kind of ideal platform to realize RTP effect. This short review summarized the design strategy of the purely organic room temperature phosphorescence polymers, mainly focusing on the building forms of polymers and the corresponding inherent mechanisms, and also gives some outlooks on the further exploration of this field at the end of this paper.


Room temperature phosphorescence Polymers Non-radiative transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21734007), and Tianjin government.


  1. 1.
    Mukheijee, S.; Thilagar, P. Recent advances in purely organic phosphorescent materials. Chem. Commun. 2015, 51, 10988–11003.CrossRefGoogle Scholar
  2. 2.
    Xu, S.; Chen, R.; Zheng, C.; Huang, W. Excited state modulation for organic afterglow: Materials and applications. Adv. Mater. 2016, 28, 9920–9940.CrossRefGoogle Scholar
  3. 3.
    Hirata, S. Recent advances in materials with room-temperature phosphorescence: Photophysics for triplet exciton stabilization. Adv. Optical Mater. 2017, 1700116.Google Scholar
  4. 4.
    Kabe, R.; Notsuka, N.; Yoshida, K.; Adachi, C. Afterglow organic light-emitting diode. Adv. Mater. 2016, 28, 655–660.CrossRefGoogle Scholar
  5. 5.
    Yang, J. Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, J.; Li. J.; Peng, Q.; Pu, K.; Li, Z. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 2018, 9, 840.CrossRefGoogle Scholar
  6. 6.
    Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Elucidating the excited state of mechanoluminescence in organic luminogens with room-temperature phosphorescence. Angew. Chem. Int. Ed. 2017, 50, 15299–15303.Google Scholar
  7. 7.
    Chai, Z.; Wang, C.; Wang, J.; Liu, F.; Xie, Y.; Zhang, Y.; Li, J.; Li, Q.; Li, Z. Abnormal room temperature phosphorescence of purely organic boron-containing compounds: The relationship between the emissive behavior and the molecular packing, and the potential related applications. Chem. Sci. 2017, 8, 8336–8344.CrossRefGoogle Scholar
  8. 8.
    Xie, Y.; Ge, Y.; Peng, Q.; Li, C.; Li, Q.; Li, Z. How the molecular packing affects the room temperature phosphorescence in pure organic compounds: Ingenious molecular design, detailed crystal analysis, and rational theoretical calculations. Adv. Mater. 2017, 1606829.Google Scholar
  9. 9.
    Xie, Y.; Li, Z. Thermally activated delayed fluorescent polymers. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 575–584.CrossRefGoogle Scholar
  10. 10.
    Fang, X.; Yan, D. White-light emission and tunable room temperature phosphorescence of dibenzothiophene. Sci. China Chem. 2018, 61, 397–401.CrossRefGoogle Scholar
  11. 11.
    Li, K.; Zhao, L.; Gong, Y.; Yuan, W.; Zhang, Y. A gelable pure organic luminogen with fluorescence-phosphorescence dual emission. Sci. China Chem. 2017, 60, 806–812.CrossRefGoogle Scholar
  12. 12.
    Mutlu, S.; Watanab, K.; Takahara, S.; Arsu, N. Thioxanthone–anthracene-9-carboxylic acid as radical photoinitiator in the presence of atmospheric air. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1878–1883.CrossRefGoogle Scholar
  13. 13.
    Kimura, T.; Watanabe, S.; Sawada, S.; Shibasaki, Y.; Oishi, Y. Preparation and optical properties of polyimide films linked with porphyrinato Pd(II) and Pt(II) complexes through a triazine ring and application toward oxygen sensors. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1086–1094.CrossRefGoogle Scholar
  14. 14.
    Shimizu, M.; Kinoshita, T.; Shigitani, R.; Miyake, Y.; Tajima, K. Use of silylmethoxy groups as inducers of efficient room temperature phosphorescence from precious-metal-free organic luminophores. Mater. Chem. Front. 2018, 2, 347–354.CrossRefGoogle Scholar
  15. 15.
    Liu, H.; Gao, Y.; Cao, J.; Li, T.; Wen, Y.; Ge, Y.; Zhang, L.; Pan, G.; Zhou, T.; Yang, B. Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: Folding-induced spin-orbit coupling enhancement. Mater. Chem. Front. 2018, 2, 1853–1858.CrossRefGoogle Scholar
  16. 16.
    Tao, S; Lu, S; Geng, Y.; Zhu, S.; Redfern, S. A. T.; Song, Y.; Feng, T.; Xu, W.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem. Int. Ed. 2018, 57, 2393–2398.CrossRefGoogle Scholar
  17. 17.
    Ma, X.; Xu, C.; Wang, J.; Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Ange w. Chem. Int. Ed. 2018, 130, 11020–11024.CrossRefGoogle Scholar
  18. 18.
    Fermi, A.; Bergamini, G.; Roy, M.; Gingras, M.; Ceroni, P. Turn-on phosphorescence by metal coordination to a multivalent terpyridine ligand: A new paradigm for luminescent sensors. J. Am. Chem. Soc. 2014,136, 6395–6400.CrossRefGoogle Scholar
  19. 19.
    Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259–3302.CrossRefGoogle Scholar
  20. 20.
    Baroncini, M.; Bergamini G.; Ceroni, P. Rigidification or interaction-induced phosphorescence of organic molecules. Chem. Commun. 2017, 53, 2081–2093.CrossRefGoogle Scholar
  21. 21.
    Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. AIEgen with fluorescence-phosphorescence dual mechanoluminescence at room temperature. Ange-w. Chem. Ind. Ed. 2017, 129, 898–902.CrossRefGoogle Scholar
  22. 22.
    Menning, S.; Krämer, M.; Coombs, B.; Rominger, F.; Beeby, A.; Dreuw, A.; Bunz, U. Twisted tethered tolanes: Unanticipated long-lived phosphorescence at 77 K. J. Am. Chem. Soc. 2013, 135, 2160–2163.CrossRefGoogle Scholar
  23. 23.
    Gong, Y.; Chen, G.; Peng, Q.; Yuan, W.; Xie, Y.; Li, S.; Zhang, Y.; Tang, B. Z. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 2015, 27, 6195–6201.CrossRefGoogle Scholar
  24. 24.
    He, Z.; Zhao, W.; Lam, J.; Peng, Q.; Ma, H.; Liang, G.; Shuai, Z.; Tang, B. Z. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 2017, 8, 416.CrossRefGoogle Scholar
  25. 25.
    Zhao, W; He, Z.; Lam, J.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 2016,1, 592–602.Google Scholar
  26. 26.
    Bolton, O.; Lee, K.; Kim, H.; Lin, K.; Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 2011, 3, 205–210.CrossRefGoogle Scholar
  27. 27.
    An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685–690.CrossRefGoogle Scholar
  28. 28.
    Gan, N.; Shi, H.; An, Z.; Huang, W. Recent advances in polymer-based metal-free room-temperature phosphorescent materials. Adv. Funct. Mater. 2018, 1802657.Google Scholar
  29. 29.
    Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997–4022.CrossRefGoogle Scholar
  30. 30.
    Yuan, W.; Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 560–574.CrossRefGoogle Scholar
  31. 31.
    Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W.; Zhang, Y. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 2016, 12, 6586–6592.CrossRefGoogle Scholar
  32. 32.
    Gong, Y.; Tan, Y.; Mei, J.; Zhang, Y.; Yuan. W.; Zang, Y.; Sun, J.; Tang, B. Z. Room temperature phosphorescence from natural products: Crystallization matters. Sci. China Chem. 2013, 56,1178–1182.Google Scholar
  33. 33.
    Reineke, S.; Seidler, N.; Yost, S.; Prins, F.; Tisdale, W.; Baldo, M. Highly efficient, dual state emission from an organic semiconductor. Appl. Phys. Lett. 2013, 103, 093302.CrossRefGoogle Scholar
  34. 34.
    Reineke, S.; Baldo, M. Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 2014, 4, 3797.CrossRefGoogle Scholar
  35. 35.
    Redondo, C.; Kleine, P.; Roszeitis, K.; Achenbach, T.; Kroll, M.; Thomschke, M.; Reineke, S. Interplay of fluorescence and phosphorescence in organic biluminescent emitters. J. Phys. Chem. C 2017,121, 14946.Google Scholar
  36. 36.
    Mieno, H.; Kabe, R.; Notsuka, N.; Allendorf, M.; Adachi, C. Long-lived room-temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF8. Adv. Opt. Mater. 2016, 4, 1015–1021.CrossRefGoogle Scholar
  37. 37.
    Joshi, R.; Meitei, O.; Jadhao, M.; Kumar, H.; Ghosh, S. Conformation controlled turn on-turn off phosphorescence in a metal-free biluminophore: Thriving the paradox that exists for organic compounds. Phys. Chem. Chem. Phys. 2016, 18, 27910–27920.CrossRefGoogle Scholar
  38. 38.
    Kwon, M.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem. Int. Ed. 2014, 53, 11177–11181.CrossRefGoogle Scholar
  39. 39.
    Su, Y. Phua, S.; Li, Y.; Zhou, X.; Jana, D.; Liu, G.; Lim, W. Q.; Ong, W.; Yang, C.; Zhao, Y. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 2018, 4, eaas9732.CrossRefGoogle Scholar
  40. 40.
    Kabe, R.; Adachi, C. Organic long persistent luminescence. Nature 2017, 550, 384–387.CrossRefGoogle Scholar
  41. 41.
    Jinnai, K.; Kabe, R.; Adachi, C. Wide-range tuning and enhancement of organic long persistent luminescence using emitter dopants. Adv. Mater. 2018, 1800365.Google Scholar
  42. 42.
    Lin, Z.; Kabe, R.; Nishimura, N.; Jinnai, K.; Adachi, C. Organic long-persistent luminescence from a flexible and transparent doped polymer. Ad. Mater. 2018, 1803713.Google Scholar
  43. 43.
    Zhang, G.; Evans, R.; Campbell, K.; Fraser, C. L. Role of boron in the polymer chemistry and photophysical properties of difluoroboron-dibenzoylmethane polylactide. Macromolecules 2009, 42, 8627–8633.CrossRefGoogle Scholar
  44. 44.
    Samonina-Kosicka, J.; Derosa, C.; Morris, W.; Fan, Z.; Fraser, C. Dual-emissive difluoroboron naphthyl-phenyl -diketonate polylactide materials: Effects of heavy atom placement and polymer molecular weight. Macromolecules 2014, 47, 3736.CrossRefGoogle Scholar
  45. 45.
    Derosa, C.; Samonina-Kosicka, J.; Fan, Z.; Hendargo, H.; Weitzel, D.; Palmer, G.; Fraser, C. Oxygen sensing difluoroboron dinaphthoylmethane polylactide. Macromolecules 2015, 48, 2967.CrossRefGoogle Scholar
  46. 46.
    Chen, X.; Xu, C.; Wang, T.; Zhou, C.; Du, J.; Wang, Z.; Xu, H.; Xie, T.; Bi, G.; Jiang, J.; Zhang, X.; Demas, J.; Trindle, C.; Luo, Y.; Zhang, G. Versatile room-temperature-phosphorescent materials prepared from N-substituted naphthalimides: Emission enhancement and chemical conjugation. A ge w. Chem. Int. Ed. 2016, 55, 9872–9876.CrossRefGoogle Scholar
  47. 47.
    Sun, X.; Wang, X.; Li, X.; Ge, J.; Zhang, Q.; Jiang, J.; Zhang, G. Polymerization-enhanced intersystem crossing: New strategy to achieve long-lived excitons. Macromol. Rapid Commun. 2015, 36, 298–303.CrossRefGoogle Scholar
  48. 48.
    Zhang, G.; Chen, J.; Payne, S.; Kooi, S.; Demas, J.; Fraser, C. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive roomtemperature phosphorescence. J. Am. Chem. Soc. 2007, 129, 8942–8943.CrossRefGoogle Scholar
  49. 49.
    DeRosa, C.; Kerr, C.; Fan, Z.; Kolpaczynska, M.; Mathew, A.; Evans, R.; Zhang, G.; Fraser, C. Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials. ACS Appl. Mater. Interfaces 2015, 7, 23633–23643.CrossRefGoogle Scholar
  50. 50.
    Zhang, T.; Chen, H.; Ma, X.; Tian, H. Amorphous 2-bromocarbazole copolymers with efficient room-temperature phosphorescent emission and applications as encryption ink. Ind. Eng. Chem. Res. 2017, 56, 3123.CrossRefGoogle Scholar
  51. 51.
    Chen, H.; Xu, L.; Ma, X.; Tian, H. Room temperature phosphorescence of 4-bromo-1,8-naphthalic anhydride derivativebased polyacrylamide copolymer with photo-stimulated responsiveness. Polym. Chem. 2016, 7, 3989–3992.CrossRefGoogle Scholar
  52. 52.
    Chen, H.; Yao, X.; Ma, X.; Tian, H. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater. 2016, 4, 1397–1401.CrossRefGoogle Scholar
  53. 53.
    Ogoshi, T.; Tsuchida, H.; Kakuta, T.; Yamagishi, T.; Taema, A.; Ono, T.; Sugimoto, M.; Motohiro, M. Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state. Adv. Funct. Mater. 2018, 28, 1707369.CrossRefGoogle Scholar
  54. 54.
    Kanosue, K.; Ando, S. Polyimides with heavy halogens exhibiting room-temperature phosphorescence with very large stokes shifts. ACS Macro Lett. 2016, 5, 1301–1305.CrossRefGoogle Scholar
  55. 55.
    Wang, T.; Zhang, X.; Deng, Y.; Sun, W.; Wang, Q.; Xu, F.; Huang, X. Dual-emissive waterborne polyurethanes prepared from naphthalimide derivative. Polymers 2017, 9, 411.CrossRefGoogle Scholar
  56. 56.
    Wang, T.; Zhou, C.; Zhang, X.; Xu, D. Waterborne polyurethanes prepared from benzophenone derivatives with delayed fluorescence and room-temperature phosphorescence. Polym. Chem. 2018, 9, 1303–1308.CrossRefGoogle Scholar
  57. 57.
    Zhou, C.; Xie, T.; Zhou, R.; Trindle, C.; Tikman, Y.; Zhang, X.; Zhang, G. Waterborne polyurethanes with tunable fluorescence and room-temperature phosphorescence. ACS Appl. Mater. Interfaces 2015, 7, 17209–17216.CrossRefGoogle Scholar
  58. 58.
    Chen, X.; He, Z.; Kausar, F.; Chen, G.; Zhang, Y.; Yuan, W. Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly(ethylene terephthalate). Macromolecules 2018, 51, 9035–9042.CrossRefGoogle Scholar
  59. 59.
    Ma, X.; Xu, C; Wang, J.; Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Ange w. Chem. Int. Ed. 2018, 57, 10854–11024.CrossRefGoogle Scholar
  60. 60.
    Kwon, M.; Yu, Y.; Coburn, C.; Phillips, A.; Chung, K.; Shanker, K.; Jung, J.; Kim, G.; Pipe, K.; Forrest, S.; Youk, J.; Gierschner, J.; Kim, J. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials. Nat. Commun. 2015, 6, 8947.CrossRefGoogle Scholar
  61. 61.
    Yu, Y.; Kwon, M.; Jung, J.; Zeng, Y.; Kim, M.; Chung, K.; Gierschner, J.; Youk, J.; Borisov, S.; Kim, J. Room-temperaturephosphorescence-based dissolved oxygen detection by coreshell polymer nanoparticles containing metal-free organic phosphors. Angew. Chem. Int. Ed. 2017, 56, 16207–16211.CrossRefGoogle Scholar
  62. 62.
    Li, Q.; Tang, Y.; Hu, W.; Li, Z. Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens: The intrinsic principle and recent progress. Small 2018, 1801560.Google Scholar
  63. 63.
    Wang Y.; Bin, X.; Chen, X.; Zheng, S.; Zhang, Y.; Yuan, W. Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol. Rapid Commun. 2018, 39, 1800528.CrossRefGoogle Scholar
  64. 64.
    Dou, X.; Zhou, Q.; Chen, X.; Tan, Y.; He, X.; Lu, P.; Sui, K.; Tang, B.; Zhang, Y.; Yuan, W. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules 2018, 19, 2014–2022.CrossRefGoogle Scholar
  65. 65.
    Zhou, Q.; Wang, Z.; Dou, X.; Wang, Y.; Liu, S.; Zhang, Y.; Yuan, W. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front. 2018, Doi: 10.1039/c8qm00528a.Google Scholar
  66. 66.
    Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan. W.; Zhang, Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 2018, 61, 351–359.CrossRefGoogle Scholar
  67. 67.
    Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z. Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Mater. Chem. Front. 2018, 2, 2124–2129.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Molecular Aggregation ScienceTianjin UniversityTianjinChina
  2. 2.Department of ChemistryWuhan UniversityWuhanChina

Personalised recommendations